
D l i USB li ti i thDeveloping USB applications using the 
STM32 ARM Cortex-M3 microcontroller

Anis BEN ABDALLAH
Embedded World 2011Embedded World 2011



Agenda

Review of some important concepts in USB 2.0 standard

USB d i t ll i l t ti i th STM32USB device controller implementations in the STM32 
microcontroller series 

Building blocks of a USB device application 

Overview about the STM32 USB device firmware libraryy

Overview about the USB Personal Healthcare Device 
Class (PHDC) and ContinuaTM ready ST stackClass (PHDC) and Continua ready ST stack

ST PC software package for USB development



Review of Important Concepts in USB 2.0 
Standard



USB Speeds and bus components

USB 2.0 speeds
Low speed: 1.5 Mbits/s  
Full speed : 12 Mbits/sFull speed : 12 Mbits/s 
High speed: 480 Mbits/s

USB keeps high compatibility at protocol level betweenUSB keeps high compatibility at protocol level between 
all supported speeds

Bus componentsBus components
USB host or Root hub: initiates all the transaction on the bus
USB function: is a device with one or more interfaces that 
expose capabilities to the host (ex: mouse, keyboard,..)
USB hub: allows to connect multiple devices to the USB host. It 
has an upstream port for communication with the host and 
multiple downstream ports for direct connection to devices



USB Topology

USB bus has a Tiered Star 
topology

At the center of each star is a hub 
with functions as end connections

A maximum of 127 devices can 
be connected in the bus

A maximum of 5 hubs can be 
connected in series

the maximum cable length isthe maximum cable length is 
5meter



USB Device attachment & speed detection

The 1.5K pull-up allows the host to detect the device attachment and its 

Full/high Speed: Pull-up on D+ Low Speed: Pull-up on D-

p p
supported speed

High-speed device is detected first as full-speed device then high-speed 
capability is detected through bus handshake mechanism called “chirp p y g p
sequence”



USB Device Power

Two possible power configurations
Self-powered: device power provided from external power-supply
B d id d f VBUS (5 )Bus-powered: power provided from VBUS (5v)

For bus-powered device, two options are possible:p , p p
Low-power devices :maximum power consumption is 100mA
High-power devices :maximum power consumption is 100mA 
during bus enumeration and 500mA after configurationg g

During device enumeration, the device indicates to host 
its power configuration (self powered/bus powered) andits power configuration (self-powered/bus-powered) and 
its power consumption in the device configuration 
descriptor



USB Suspend mode
USB device should enter in USB Suspend mode when the bus is in  
idle state for more than 3 ms

In suspend mode, when the device is bus powered , the current 
drawn from VBUS power shouldn’t exceed 2.5mA

USB h t t d i f t i i d d bUSB host prevents device from entering in suspend mode by 
periodically issuing Start of Frame (SOF)  or Keep Alive for LS

For High-speed, SOF is sent every micro-frame: 125us +/- 65ns
For Full-speed, SOF is sent every frame: 1ms +/- 500nsp y
For Low-speed, Keep Alive (End of Packet) is sent every 1ms in 
absence of low-speed data

Exist from Suspend mode can beExist from Suspend mode can be
Initiated from host by issuing the resume signaling
Initiated from device by issuing the remote wakeup signaling



USB Transaction
Token packet (SETUP, IN, OUT) always issued by the host, includes:

PID (IN: Device to host data transaction or SETUP/OUT: host to device data transaction)
Target device address
Target endpoint numberTarget endpoint number
CRC

Data packet (DATA0, DATA1, DATA2, MDATA) includes:
PID: DATA0, DATA1, DATA2 or MDATA (DATA2 and MDATA are used only in HS mode)
C i th d t l d f t ti t b th h t d iCarries the data payload of a transaction sent by the host or device
DATA PID toggle used to synchronize HOST and DEVICE to avoid repeated packet transfer 
in case of corrupted or lost handshake 
CRC

H d h k k t (ACK NAK STALL NYET)Handshake packet (ACK, NAK, STALL, NYET) 
ACK: packet reception acknowledged (sent from host or device)
NAK : packet reception not acknowledged (sent from device only)
STALL: control request not supported or endpoint halted (sent from device only)
NYET: device not ready to accept further packets (only for high-speed device)NYET: device not ready to accept further packets (only for high speed device)

Token packet Data packet (up to 1023 bytes) Handshake packet

PID ADDRESS ENDPOINT CRC PID DATA CRC PID



Examples of IN/OUT transactions

OUT

Host Device Host Device

DATA0
ACK

OUT IN

NAK

IN
OUT

DATA1 ACK
DATA0

NAK

OUT
IN

ACK

ACK

DATA1

ACK
DATA1



USB Transfer

A USB transfer is composed of one or multiple bus transactions

Four types of USB transfers are defined:Four types of USB transfers are defined:
Control: used for control and device configuration requests (ex: device 
enumeration)
Bulk: used for data transfers with no guaranteed delivery rate (ex: g y (
printer, mass-storage drive,..)
Interrupt: used for devices that need to be polled periodically for data 
transfers (ex: mouse, keyboard, joystick)
Isochronous: used for data streaming applications that requires aIsochronous: used for data streaming applications, that requires a 
guaranteed delivery rate, but no error checking  (ex: audio, video 
devices)

During each frame (in LS/FS) or micro-frame (in HS), the host will 
schedule the needed transfers with different bandwidth allocation for 
each transfer type



USB Control Transfer
Used for standard control requests during device enumeration process or 
during class operation

f ( )All devices should support control transfer through endpoint 0 (bidirectional)

It is given reserved bus bandwidth for 10% for FS/LS and 20% for HS

Control transfer has 3 stages
SETUP stage:  one SETUP transaction for issuing the control request (ex: Get 
Descriptor)
Optional DATA stage IN or OUT: one or multiple data transactions p g p
Status stage: one IN or OUT transaction with a Zero Length data packet to check 
if control transfer request executed correctly or not. 

The maximum data packet size during the optional data stage is 8 bytes for p g p g y
LS and 64 bytes in FS/HS

Transfer error management done through handshake packet and data PID 
toggle mechanismtoggle mechanism



Example of a USB Control Transfer

Get device descriptor standard request: 

SETUP stage

DATA stage IN

STATUS stage



USB Bulk Transfer

Used to transfer large amount of data without guaranteed delivery 
rate (sending data to printer, drive,..)

Lowest priority transfer with no reserved bus bandwidth but can 
occupy the full bandwidth if no other transfer on the bus

Supported only by full-speed and high-speed devices

Consist of one or more IN or OUT transactions during eachConsist of one or more IN or OUT transactions during each 
frame/micro-frame (unidirectional)

The max packet size is 64 bytes for FS and 512 bytes for HSThe max packet size is 64 bytes for FS and 512 bytes for HS

Transfer error management done through handshake packet and 
data PID toggle mechanismgg



USB Interrupt Transfer
Interrupt transfers are used to poll devices to determine if they have data 
that needs to be transferred (mouse, keyboard,..)

O fInterrupt IN or OUT data transfers are scheduled periodically within a 
maximum polling period negotiated during device enumeration but host is 
free to initiate more IN/OUT transactions if there is bandwidth available

limited reserved bandwidth for Low/Full speed devices
For low-speed  the packet max length is 8 bytes with a guaranteed maximum 
latency of up to 1 packet each 10 frames => 800 Bytes/s
For full-speed the packet max length is 64 bytes with a guaranteed maximum 
latency of up to 1 packet each frame => 62 5 KBytes/slatency of up to 1 packet each frame => 62.5 KBytes/s

High bandwidth with high-speed
For high-speed the packet max length is 1024 bytes with up to 3 packets each 
micro framemicro-frame 

Transfer error management done through handshake packet and data PID 
toggle mechanism



USB Isochronous transfers
Used mainly for streaming real-time data like audio and video

Needs a guaranteed bandwidth with a constant transfer rate but there is no error 
checkingchecking

The requested bandwidth is negotiated between host and device during enumeration

Transfer is in one direction and can consist of one or more data OUT or INTransfer is in one direction and can consist of one or more data OUT or IN 
transactions with no handshake packet

In FS, the max packet length is 1023 bytes with a maximum of one packet per frame
In HS, the max packet length is 1024 bytes with a maximums of 3 packets per micro-frame

Devices that use isochronous transfer need in most of the cases to establish a 
synchronous connection (ex: speaker, microphone, video camera,...)

Minimal or no data buffering

The synchronization between the data source (producer) and the sink (consumer) canThe synchronization between the data source (producer) and the sink (consumer) can 
be achieved by

Having the source and sink clocks synchronized to the SOF packet 
Doing a clock adaptation either on the source using a dedicated feedback pipeline or on the 
sink clock based on the received data rate 



Host constraints for Interrupt & 
Isochronous Transfers

The host may not be able to provide the requested bandwidth to 
device, in this case the host will try other possible configurations with 
lower bandwidth requirements (if provided by the device)lower bandwidth requirements (if provided by the device)

If still no bandwidth available, the host will refuse device 
fi ticonfiguration

Host software may have some latency for processing data and 
issuing transfer requests on time due to other processes taking CPU 
time

In order to avoid multiple SW calls for handling data to be transmitted 
or received, large chunks of data transfers should be scheduled



USB High-Speed mode specific features 
PING/NYET Protocol

For control and bulk transfers, when a high-speed device 
is not ready to receive further data OUT packets, it can 
send the NYET handshake

When the host receives the NYET handshake it shouldWhen the host receives the NYET handshake, it should 
send the PING packet periodically to check if device is 
ready or not to resume receiving data packets

When ACK is received for a PING request, the host will 
di d t k tresume sending data packet



USB High-Speed mode specific features 
SPLIT Protocol

The SPLIT protocol is used when the HS host need to 
communicate with a low/full speed device which is 
connected to a high speed hubconnected to a high-speed hub

The host will do the data transaction with the HS hub in 
high-speed, then the hub as a host will initiate the same 
transaction in low/full speed with the device

The data transaction done by the host with the HUB is 
preceded with the Start SPLIT (SSPLIT) token

The host will later use CSPLIT token to retrieve the 
device response from the HUB p



USB controllers in the STM32 
microcontroller series



USB Device Controllers in STM32 series

USB device controller is present in almost all STM32 ARM Cortex-
M3 series

Three hardware implementations are available
USB 2.0 full-speed device controller
USB 2.0 full-speed OTG dual role host/device controllerUSB 2.0 full speed OTG dual role host/device controller
USB 2.0 high-speed OTG dual role host/device controller

Selection of the controller that can fit the application needs will pp
depend on

Needed USB transfer performance
Needed CPU performance
Available Flash and RAM memory size
Presence of other needed peripherals 
Power consumption requirements
External components (BOM)External components (BOM)  



USB Device Controller in STM32 series

USB 2.0 Full-speed Device Controller 



USB 2.0 Full-speed Device Controller 
Features

Available on the following ARM Cortex-M3 platforms:
STM32F102: USB access line (48 MHz MCU, up to 16KB SRAM and 
128KB of FLASH )128KB of FLASH )
STM32F103: Performance line (72 MHz MCU, up to 96KB SRAM and 
1MB FLASH)
STM32L152: Ultra-low power series (32 MHz MCU, up to 16KB SRAM 
and 128KB of FLASH)and 128KB of FLASH)

Main features
USB 2 0 full speed compliantUSB 2.0 full-speed compliant
Up to 8 bi-directional endpoints (or 16 unidirectional endpoints) 
Embedded full-speed analog transceiver
Supports all transfer modes (control bulk interrupt and isochronous)Supports all transfer modes (control, bulk, interrupt and isochronous)
Dedicated SRAM area of 512 bytes as packet memory that can be 
shared among the needed endpoints
Double-buffering mechanism for isochronous and bulk transfers
USB Suspend/Resume with system entry/wakeup for low power mode



USB 2.0 Full-speed Device Controller
Block Diagram

D+ D-

SIE (Serial Interface Engine)
NRZI Encoding/Decoding
Synchronization & Pattern Recognition
Bit t ffi d H d h k l ti

D+ D

Analog
Transceiver

PLL USB IP

48 MHz

Bit-stuffing and Handshake evaluation
PID & CRC generation and checking
Interrupt generation

Suspend Timer
Generate the Suspend interrupt when

Suspend
Timer

Control
Registers & Logic

Interrupt
Registers & Logic

Clock
Recovery

Endpoint
Selection

RX-TX

Control

SIE48MHzGenerate the Suspend interrupt when 
no SOF is detected for 3ms

Packet Buffer Memory
512 bytes dedicated SRAM memory
The Arbiter allows dual access either 

Packet
Buffer

I t f

g gS

Endpoint
Registers

48MHz 
USB Clock 

Domain
APB Clock 

Domain

from packet buffer interface or APB 
interface

3 interrupt vectors (lines)
Low priority interrupt for managing all 
endpoints

Interface Registers

Interrupt
MapperArbiter

Packet
Buffer

Register
Mapperp

High priority interrupt: can be used for 
managing isochronous/double-buffered 
endpoints only
Suspend/Resume interrupt

MapperArbiter Buffer
Memory

Mapper

APB Interface APB Interface

Interrupt linesAPB busAPB_CLK



USB 2.0 Full-speed Device Controller
Operation overview

D+

USB Interrupt
CTR Interrupt is 

generated

ARM 
Cortex M3 AP

B 
In

te
rfa

ce USB IP

D

D-Arbiter Packet Packet 

EP2 RX

EP2_TX

SRAM

AP
B

EP1_RX

EP2_RX

EP1_TX
One data packet 

received

EP0_RX

EP0_TX

Packet Memory Area 



USB 2.0 Full-speed Device Controller
Transactional model handling

After each successful transaction on any configured endpoint, an interrupt 
(correct transfer CTR) is raised

“C fThe “Correct transfer” interrupt handler has to:
Check interrupt status bits to determine the endpoint on which the transaction has 
occurred
For OUT/SETUP endpoints: copy received data packet from packet memory 
area to application buffer for processing then re enable the endpoint to be able toarea to application buffer for processing, then re-enable the endpoint to be able to 
receive next incoming packet
For IN endpoints: copy next data to be transferred from application buffer to 
packet memory area, then re-enable the endpoint to send the packet when the 
next IN token comes from host

The hardware will automatically change the endpoint to NAK state after end 
of each transaction, so it is up to application to re enable endpoint for next 
transaction

The Transactional model has simple FW handling, but does not allow 
multiple-packet transfer without CPU intervention after each transferred 
packet 



USB 2.0 Full-speed Device Controller
Endpoint Configuration/Enabling

Before start of any transfer on one endpoint, the following 
configuration should be done:

Endpoint address (only lower four bits)
Endpoint transfer type (control, bulk, interrupt or isochronous)
Endpoint TX or RX packet start address location in the packet memory 
area
For OUT/SETUP endpoints the max receive packet size should beFor OUT/SETUP endpoints the max receive packet size should be 
configured

After the configuration, endpoint can be enabled for a transfer
IN endpoint:IN endpoint:

Data can be copied from application buffer to endpoint PMA buffer
the TX transfer count should be updated (the maximum is one max packet 
size)
Endpoint status should be changed to “ACK” to allow data transfer when INEndpoint status should be changed to ACK  to allow data transfer when IN 
token arrives

OUT/SETUP endpoint:
Endpoint status should be changed to “ACK” to allow OUT/SETUP data 
packet reception on endpointp p p



USB 2.0 Full-speed Device Controller
Packet Memory Area  

EP2 RX COUNT

EP2_RX

EP2_TX_ADDR
EP2_TX_COUNT
EP2_RX_ADDR

EP2_RX_COUNT

EP1 RX

EP1_TX_COUNT
EP1_RX_ADDR

EP1_RX_COUNT
_ _

EP1 TX

EP0 TX COUNT
EP0_RX_ADDR

EP0_RX_COUNT
EP1_TX_ADDR

EP0 TX

EP0 RX

EP0_TX_ADDR
EP0_TX_COUNT

Packet Memory AreaBuffer Description Table (BTABLE)



USB 2.0 Full-speed Device Controller
Double-Buffering mechanism 

Double buffering is used to improve the transfer performance for isochronous and 
bulk endpoints (in one direction only)

Consists of using two buffers in PMA (buffer0 and buffer1) at any time CPU shouldConsists of using two buffers in PMA (buffer0 and buffer1), at any time CPU should 
be accessing one buffer (for R/W) while USB IP is accessing the other buffer

USB swapping between buffer0 and buffer1 is done by hardware

In double-buffered bulk transfer, If application (CPU) is too slow to give its buffer to 
USB, then NAK will be sent to host

CPU
EP1 BUFF1EP1 BUFF1

USB CPU
EP1 BUFF0EP1 BUFF0

PMA



USB 2.0 Full-speed Device Controller
Packet Memory Area with double-buffering  

EP1 TX Buffer 0

EP1 TX Buffer 1

EP1_TX_COUNT_1

EP1_TX_ADDR_0
EP1_TX_COUNT_0
EP1_TX_ADDR_1

EP0 RX

EP1 TX Buffer 0_ _ _

EP0 TX ADDR
EP0_TX_COUNT
EP0_RX_ADDR

EP0_RX_COUNT

EP0 TX

0

EP0_TX_ADDR

Packet Memory AreaBuffer Description Table (BTABLE)



USB 2.0 Full-speed Device Controller
Suspend/Resume Interrupt

When no SOF is detected for 3 ms, a suspend interrupt is generated

In the interrupt handler of the suspend interrupt if bus poweredIn the interrupt handler of the suspend interrupt, if bus powered 
device, the MCU should enter in low power mode in order to lower its 
power consumption

In order to achieve the best low power consumption, the STM32 can 
enter in STOP mode (all peripherals and CPU clocks OFF)

A host resume/reset signaling detection can wakeup the MCU from 
STOP mode

The device can also initiate a bus resume or “remote wakeup” using 
external interrupt that can wakeup MCU from STOP mode



USB Device Controller in STM32 series

USB 2.0 Full-Speed OTG Host/Device 
Controller



USB 2.0 Full-Speed OTG Host/Device Controller 
Features

Available on the STM32 connectivity line
STM32F105/7 : 72 MHz cortex M3 MCU with up to 64KB SRAM 
and 256KB FLASHand 256KB FLASH

Main features
USB 2.0 Full-speed dual role Host/Device with OTG modeUSB 2.0 Full speed dual role Host/Device with OTG mode 
support
Can be configured as host-only or device-only controller
Integrated Full-speed PHY with OTG mode support
Dedicated packet memory of 1.25 Kbytes with advanced FIFO 
management and dynamic memory allocation
Device mode features

1 bidirectional control endpoint01 bidirectional control endpoint0
Up to 3 IN and 3 OUT endpoints configurable to support Bulk, 
Interrupt or isochronous transfer
1 shared FIFO for all OUT and control endpoints
Up to 3 dedicated TxFIFOs for IN and control endpointsUp to 3 dedicated TxFIFOs for IN and control endpoints



USB 2.0 Full-Speed OTG Host/Device Controller 
FIFO operation

ARM Cortex M3
CPU

AHB bus
OTG_FS interrupt

USB pushes received 
packets into RXFIFO

Shared RxFIFO
PUSHPOP

packets into RXFIFO 
while CPU pops packets

D+

EP0 TxFIFOCPU pushes packets 
into TXFIFO while USB 

pops packets
Full-Speed
Transceiver

D+

D-
USB
MAC

AHB
Interface

EP1 TxFIFO
PUSH POP

pops packets

EP2 TxFIFO



USB 2.0 Full-Speed OTG Host/Device Controller 
FIFO Configuration & Transfer initialization

FIFOs configuration
The size of TxFIFOs and the shared RxFIFO can be configured 
as needed by the application in a shared memory space ofas needed by the application in a shared memory space of 
1.25KBytes
Dynamic reconfiguration of the FIFOs sizes is possible

OUT/SETUP transfer initialization
Software should configure the transfer size
Enable the endpoint for packet reception
Wait packets to be received

IN transfer initialization
Software should configure the transfer size
Enable the endpoint 
Start writing data to dedicated endpoint TxFIFO



USB 2.0 Full-Speed OTG Host/Device Controller 
Interrupt handling

Three important interrupts are used during 
transfertransfer

TxFIFOn empty interrupt: occurs when TxFIFO for 
endpoint n is empty or half empty, used to inform 

li ti th t it it d t t T FIFOapplication that it can write more data to TxFIFO
Shared RxFIFO Queue level interrupt: raised when 
there is at least one received data packet inside thethere is at least one received data packet inside the 
shared RXFIFO
Correct Transfer Interrupt: occurs when the full 
programmed transfer is finished on one endpoint



USB Device Controller in STM32 series

USB 2.0 High-Speed OTG Host/Device 
Controller



USB 2.0 High-Speed OTG Host/Device Controller 
Features

Available on the new STM32F2x Cortex-M3 ARM platform
Up to 120MHz MCU
Up to 128KBytes of SRAM and up to 1 Mbytes of FLASHp y p y
Up to two USB controllers  

One Full-Speed USB dual role host/device OTG controller
One High-Speed USB dual role host/device OTG controller 

Device features
High-speed/Full-speed Device support
1 bidirectional control endpoint0
U t 5 IN d 5 OUT d i t fi bl t t B lk I t tUp to 5 IN and 5 OUT endpoints configurable to support Bulk, Interrupt 
or isochronous transfer
Dedicated DMA with access to internal SRAM or external memory bus
Dedicated packet memory of 4 Kbytes with advanced FIFO management 

d d i ll tiand dynamic memory allocation
Internal analog transceiver for Full-Speed mode
Needs connection to external transceiver for High-speed mode through 
ULPI bus 



USB 2.0 High-Speed OTG Host/Device Controller 
FIFO operation

SRAM

ARM Cortex M3
CPU

AHB bus OTG_FS interrupt

USB pushes received 
packets into RXFIFO

AHB Master
Interface

AHB Slave
Interface

Shared RxFIFO
PUSHPOP

packets into RXFIFO 
while DMA pops packets

InterfaceInterface

ULPI
High-Speed
Transceiver

D+

D-
USB
MACDMA

EP0 TxFIFODMA pushes packets 
into TXFIFO while USB 

pops packets
AHB
Slave

EP1 TxFIFO
PUSH POP

p p pSlave
Interface



USB 2.0 High-Speed OTG Host/Device Controller
DMA operation

DMA allows to manage a full transfer without CPU 
intervention after each transaction

CPU is informed of end of transfer using the Correct transfer 
interrupt

A custom threshold FIFO level can be defined to trigger 
data transfer

Transmit threshold TxFIFO trigger level: free space in TxFIFO 
than can trigger an transfer from memory to FIFO
Receive threshold RxFIFO trigger level: a minimum receive 
data level in receive FIFO that can trigger a transfer to memory



Summary Comparison Table

Controller USB Full-Speed 
Device controller

USB OTG Full-speed 
dual role host/device

USB OTG High-speed 
dual role host/device

S t d F ll d l iSupported 
speeds Low/Full speed Full speed only in 

device mode High/Full speed

Number of
-1 bidirectional 
control -1 bidirectional control

Number of 
endpoints 8 bidirectional

control
- 3 IN
- 3 OUT

- 5 IN
- 5 OUT

CPU speed Up to 72MHz Up to 72MHz Up to 120 MHzCPU speed Up to 72MHz Up to 72MHz Up to 120 MHz

FIFO support NO YES YES

Packet Memory 512 Bytes 1.25 KBytes 4 KBytes

DMA support NO NO YES

PHY Internal Full-Speed Internal Full-Speed
-Internal Full-Speed
-External High-speed p p g p
(through ULPI bus)



Building Blocks of a USB Device 
Application



Building Blocks of a USB Application

Application (mouse, keyboard, Device

USB Standard USB Class Layer

pp ( y
speaker,…) Descriptors

Control Requests
(USB spec chapter 9)

(HID, Mass-Storage, 
CDC, vendor class…)

Control TransferEndpoints

USB Low Level Driver

Control Transfer
management

Endpoints 
R/W access

USB controller Hardware



USB Descriptors
Device

descriptor

ConfigurationConfiguration
descriptor

Configuration
descriptor

Interface Interface
Interface
descriptor

descriptor

Endpoint

descriptor

Endpoint Endpoint
Endpoint
descriptor

descriptor

Endpoint
descriptor

Device Descriptor: includes information of the device (PID, VID, Class) and the number of 
supported configurations

p
descriptor

p
descriptor

p
descriptor

descriptor descriptor

Configuration Descriptor: 
Includes the power configuration information, the number of supported interfaces in this configuration
Configurations are mutually exclusive

Interface Descriptor: provides information about function or feature that device implements (class, 
subclass ) also it indicates the number of endpoint it supportssubclass,…) also it indicates the number of endpoint it supports
Endpoint Descriptor: provides information about the endpoint (address, type, max packet size)



Device Descriptor
Offset Field Size Description

0 bLength 1 Descriptor size in bytes (12h)

1 bDescriptor Type 1 01h1 bDescriptor Type 1 01h

2 bcdUSB 2 USB spec release number (BCD) (0200h)

4 bDeviceClass 1 Class code (00h when interface desc defines class)

5 bDeviceSubclass 1 Subclass code

6 bDeviceProtocol 1 Protocol code

7 bMaxPacketSize0 1 Maximum endpoint size for endpoint 0 (64)

8 idVendor 2 Vendor ID

10 idProduct 2 Product ID

12 bcdDevice 2 Device release number (BCD)

14 iManufacturer 1 Index of string descriptor for the manufacturer

15 iProduct 1 Index of string descriptor for the product

16 iSerialNumber 1 Index of string descriptor for the serial number

17 bNumConfigurations 1 Number of possible configuration



Configuration Descriptor
Offset Field Size (byte) Description

0 bLength 1 Descriptor size in bytes (09h)

1 bDescriptorType 1 02h

2 wTotalLength 2 The number of bytes in the configuration 
descriptor and all of its subordinate description

4 bN I t f 1 N b f i t f i th fi ti4 bNumInterfaces 1 Number of interfaces in the configuration

5 bConfiguration Value 1 Identification for the configuration

6 iConfiguration 1 Index for string descriptor for the configuration 

7 bmAttributes 1 Self or bus powered / remote wakeup setting

8 bMaxPower 1 Bus power required in units of 2mA



Interface descriptor
Offset Field Size (byte) Description

0 bLength 1 Descriptor size in bytes (09h)

1 bD i t T 1 04h1 bDescriptorType 1 04h

2 bInterfaceNumber 1 Number identifying the interface

3 bAlternateSetting 1 Number that identifies an Alternate interface for 
bInterfaceNumber

4 bNumEndpoints 1 Number of endpoints supported by the interface 
(without counting endpoint zero)

5 bInterfaceClass 1 Class code (ex HID = 03h)5 bInterfaceClass 1 Class code (ex HID  03h)

6 bInterfaceSubclass 1 Subclass code (ex Boot Interface Subclass = 01h)

7 bInterfaceProtocol 1 Protocol code (ex Mouse = 02h)

8 iI t f 1 I d f t i d i t f th i t f8 iInterface 1 Index for string descriptor for the interface



Endpoint Descriptor
Offset Field Size (byte) Description

0 bLength 1 Descriptor size in bytes (07h)

1 bDescriptorType 1 05h

2 bEndpointAddress 1 Endpoint number and direction

3 bmAttributes 1 Transfer Type (bulk, interrupt, isochronous)

4 wMaxPacketSize 2 Maximum packet size supported

6 bInterval 1 Polling time for interrupt or isochronous EP



Class Layer
A class specifies the operation of group of USB devices that have 
similar functionalities, ex:

Audio class (speaker, microphone)
Communication device class (virtual COM-port, modems, Ethernet 
adapters,…)
Human Interface Device class (mouse, keyboard, joystick,…)

Defining a USB class allows to have unique host driver for all devices 
belonging to the class

A USB l d fiA USB class defines
Required or optional endpoints
Needed Interfaces
Class-specific descriptorsp p
Required values for fields in the standard descriptors
Class Control requests
Format of data to be transferred and optionally the protocol layer for data 
transfer (ex Bulk-only transfer for Mass-Storage class)transfer (ex Bulk-only transfer for Mass-Storage class)



Human Interface Device (HID)
HID class is mainly intended for devices that have interaction with human 
inputs (moving a joystick, a mouse, pressing a keyboard…) but can be used 
for other application

Supported natively by MS Windows operating system

HID needs one IN interrupt endpoint to transfer data, the host will poll the IN p p p
endpoint periodically to check if device has data to transfer

Transferred data is formatted in fixed structure called HID Report

HID defines six specific control requests
Get/Set Report: allows to get/send report to device
Set/Get Idle: allows to get/set the idle rate 
Set/Get Protocol: allows to get/set used protocol (boot or report protocol)Set/Get Protocol: allows to get/set used protocol (boot or report protocol)

Two class specific descriptors are defined
HID class descriptor 
HID Report descriptorHID Report descriptor



USB Control Transfer Management
Should implement a state machine for managing the three stages of a 
control transfer on endpoint0

SETUP stage
O ti l D t IN OUT tOptional Data IN or OUT stage
Handshake stage

During the SETUP stage, the received request can be
Standard USB Request  as defined in USB spec Chapter 9
Standard Class USB request (HID, CDC,…)
Vendor Class USB request

In case a request is not supported, the control endpoint should send a 
STALL handshake packet to host

A control request can targetA control request can target
Device
Interface
Endpoint



SETUP request Structure

Offset Field Size Value Description

0 bmRequestType 1 Bit-Map D7 Data Phase Transfer Direction
0 = Host to Device
1 = Device to Host
D6..5 Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved3 = Reserved
D4..0 Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other3  Other
4..31 = Reserved

1 bRequest 1 Value Request

2 wValue 2 Value Value2 wValue 2 Value Value

4 wIndex 2
Index

or 
Offset

Index

6 wLength 2 Count Number of bytes to transfer if there is a data phase



Standard USB Control Requests

Control requests are defined in chapter 9 of the 
USB specification

Used mainly during the enumeration phase by 
the host to get needed descriptors information 
about the device and to select the needed 
configurationconfiguration

Some standard requests (Get Feature/ SetSome standard requests (Get Feature/ Set 
Feature, Get Status) may be used as a class 
requests to get/set class specific features



Standard USB control Requests
bRequest Target Description

GET_STATUS 
(0x00)

Device or
Interface or
Endpoint

-Device: allows to get the device power settings
-Endpoint: allows to check STALL status of endpoint

p

CLEAR_FEATURE 
(0x01)

Device or
Interface or
Endpoint

-Device: allows to clear Device remote wakeup feature
-Endpoint: allows to clear STALL status for an endpoint 

SET FEATURE Device or
I t f

-Device: Sets Remote wakeup feature
E d i t S t STALL diti d i tSET_FEATURE

(0x03) Interface or
Endpoint

-Endpoint: Sets STALL condition on endpoint

SET_ADDRESS 
(0x05) Device

Sets device address

GET DESCRIPTOR Gets a Descriptor (Device Configuration String)GET_DESCRIPTOR
(0x06) Device

Gets a Descriptor (Device, Configuration, String)

GET_CONFIGURATION 
(0x08) Device

Gets the value of current configuration

SET CONFIGURATION Sets the config ration to seSET_CONFIGURATION 
(0x09) Device

Sets the configuration to use

GET_INTERFACE
(0x0A) Interface

For interfaces that have alternate interfaces, the host 
requests the current alternate interface

SET INTERFACE F i t f th t h lt t i t f th h tSET_INTERFACE
(0x0B) Interface

For interfaces that have alternate interfaces, the host 
requests to set a particular alternate interface



USB Low Level Driver

Functions/Macros that do direct access to USB block registers for
Device global initializations (ex: device address, speed,..)
Endpoints initialization (ex: address transfer type )Endpoints initialization (ex: address, transfer type, ...)
Transfer initialization
Packet memory area or FIFO access

Manage the USB interrupts with callbacks to application layers
Global device interrupts (USB Reset, USB suspend,..)
Endpoints transfer related interrupts (correct transfer interrupt, TxFIFOn 
empty,…)

Power management functions during Suspend/resume
E t i l d d i d dEntry in low-power mode during suspend mode
Remote wakeup management



STM32 USB device firmware library



USB Device Developer Kit
Allows to easily get started with USB device development on STM32 
platforms

The kit provides all the needs firmware blocks including
Low level USB drivers
Firmware for  handling the standard control requests (chapter 9)
USB class la er implementation ith demos r nning on e alboards forUSB class layer implementation with demos running on evalboards for

Mass-Storage
HID
CDC Virtual COM port 
A di ( k i h )Audio (speaker, microphone)
Device Firmware Upgrade

The Library allows easy development of Custom vendor classy y p

All the class implementations are validated using the USB Command 
Verifier tool provided by the USB-IF



Folder Organization of the STM32 USB 
Developer Kit

Libraries
CMSIS : Cortex Microcontroller Software Interface 
Standard files (startup files, NVIC, clock config)
STM32_USB-FS-Device_Driver: Includes the 
USB low level driver + firmware for handling 
control transfer and standard control requests
STM3210x_StdPeriph_Driver: low level drivers 
f t d d i h l (ti l k )for standard peripherals (timer, clocks, ..)

Project
Implementation for the various class demosp
Each demo includes workspaces for different 
third-party toolsets (IAR, KEIL, RIDE, HITEX, 
Attolic)

Utilities
Evalboard utilities (buttons, LCD, SD card 
access,..)



STM32_USB-FS-Device_Driver 
Low Level Driver

The folder includes low level drivers for:
The USB Full-speed device controller
The OTG Full-speed controller (only for device mode)

Source files for the OTG Full-speed device controller:

file Description

otg_fs_int.c All USB Interrupt handling with callbacks to application layer

otg_fs_pcd.c High level functions for Endpoint access (Read/Write, Open/Close,..)

otg_fs_cal.c Core access layer (function doing register access for global device 
configuration, endpoint initializations, transfer initializations, FIFOs R/W)

otg_fs_dev.c Wrapper for device/endpoints high level access, implemented for 
compatibility reason with the USB full-speed controllercompatibility reason with the USB full speed controller

Usb_sil.c Serial Interface Layer (SIL) :Wrapper for endpoint R/W access 
implemented for compatibility reason with the USB full-speed controller



STM32_USB-FS-Device_Driver 
Control transfer & Library initialization

All the handling of control transfer and the standard USB 
requests is done in file usb_core.c

The implementation allows the handling of the standard 
control requests and the dispatching to class layer whencontrol requests and the dispatching to class layer when 
receiving a class control request

File usb_init.c includes one function USB_Init() that 
should be called to initialize the library structures and to 
d d d d i i iti li ti ( t l fi tido needed device initialization (control configuration, 
memory allocation,…) 



Class Layer Implementation

The various USB classes implementations are found in 
“Project” folder

For each class, the class specific control requests are 
implemented in file usb_prop.c

Non-control endpoints correct transfer interrupt handling 
is done in file usb_endp.c 

The USB descriptors for the device are implemented in 
file usb_desc.c

Device power management is implemented in file 
usb_pwr.c



Overview about PHDC class and Continua 
Stack



Continua Health Alliance
The Continua Health Alliance is an open industry 
consortium with more than 200 member companies 
around the worldaround the world
Their Mission is to establish an eco-system of inter-
operable personal health systems in the healthcare 
sector. 

ST is a contributing memberST is a contributing member
ST is allowed to use the Continua Logo

After certification the logo can be used on products.

63



64



65



ST Healthcare Library features

PC
Pulse

O i t

Thermometer

PC

Personal
Health System

Weight

Oximeter

Pulse /
Blood Pressure

11073-10404 = Pulse Oximeter
11073-10406 = Pulse / Heart Rate
11073-10407 = Blood Pressure
11073-10408 = Thermometer
11073-10415 = Weighing Scalede

pe
nd

en
t

Cell Phone
Weight

Scale

Cardiovascular 

Glucose
Meter

11073 10415  Weighing Scale
11073-10417 = Glucose 
11073-10441 = Cardiovascular Fitness Monitor
11073-10442 = Strength Fitness Equipment
11073-10471 = Independent Living Activity
11073-10472 = Medication MonitorTr
an

sp
or

t I
nd

Set Top Box

Aggregator

Independent 
Living Activity

and Strength 
Fitness Monitor

Medication

11073-20601  = Base Framework Protocol

AggregatorMedication
Adherence

Personal Health Device
Class Specification



Thermometer Demo based on latest CESL



Healthcare Firmware stack (1/2)

Healthcare Application

IEEE 11073-20601 Layer
10408 – Thermometer

10417 – Glucose meter 10417 – Glucose meter 
Other  device specialization

STM32L USB

USB PHDC Class Mass Storage (*) DFU (*)

STM32L USB

(*) Optional classes not linked to Medical



Healthcare Firmware stack (3/3)
Main.c/h

(Thermo.c/h, Gluco.c/h, …)
User Application

Service Model Layer
ServLayer.c/h

Transmission Template &
Object service handlers

Dev_Spec_104xx.c/h

State Machine
Com_Model.c/h

Transport abstraction layer
til.c/h

USB Transport
USB Desc USB endp USB propUSB istrUSB_Desc USB_endp USB_propUSB_istr

69



ST offer for PC software USB 



USB Offer with STM32 ( F1, L & F2) 
Free VID/PID Sub-licensing 

Service for customers

DFU Driver Certified

Free Drivers  Resell at 
WHQL

Windows  Software 
Kit

Custom/Bulk Drivers

Fe
at

u
re

s

Windows Host Driver Kit:

Certified Driver 3.0.0 , XP Vista 
Windows7 ( x86 & x64)

DFuSe ( Demo + Sources)

USB Host library

V1.0.0

CDC Driver Certified

WHQL Qualified

er
fo

rm
an

ce
 &

 F USB Host library
STM32F105/7

Mass storage,
HID (mouse & Keyboard)

Healthcare

Pe

USB PHDC Class & Continua
STM32L15x

Thermometer, Glucose agents

USB Developer Kit
Device
3.2.x

STM32F102/3
DFU, Joystick, Custom HID, Mass-storage, 

Audio speaker  Audio Streaming

USB Developer Kit
Device
3.3.x

STM32F102/3 & STM32L
DFU, Joystick, Custom HID, Mass-storage, Audio 

speaker, Virtual com Port

71

Audio speaker, Audio Streaming,
Virtual com Port

speaker, Virtual com Port

2011 Jan 2012



New PC Windows Driver (1/2)
D i tiDescription :

• USB driver for Microsoft operating systems.
• Designed to work with USB DFU and all specific USB classes
• Allow access to the Control, Interrupt and Bulk pipes and is an 

alternative to WinUSB driver without limitations.

• WHQL Certified and in production• WHQL Certified and in production 
• Used for STMicroelectronics USB Bootloader ( DFU)
• At many customers since 2008.

• Full documented API and Reference examples with Visual C++ (6, 
2005, 2008 and 2010 : x86 and x64)

A li tiApplications usage:
• Device Firmware Upgrade STMicroelectronics Extension (DfuSe)
• Vendor Class involving Bulk/Interrupts Pipes

A l t th ith I h Pi

72

• Any classes, except those with Isochronous Pipes.



New PC Windows Driver ( 2/2)

• Compatible Operating Systems
MS Windows 98SE
MS Windows 2000MS Windows 2000
MS Windows XP (x86 & x64)
MS Windows Vista (x86 & x64)
MS Windows Seven (x86 & x64)

• WHQL Certification Added Value to our customers

Providing quality end-to-end experience of customers
Retailers expect the logo on devices & concentrate on own business
Consumers & customers  look for logo-qualified products

On-line Windows Update by clicking the Update Driver button in Device Manager

73



Microsoft Logo Certification

74



New Service for STM32 USB small customers
Description :

USB “PID” and VID (0x0483) from STMicroelectronics Sub-licensing 

Program Process 
Receive Requests from our Customers thru sales offices with customer 
details:

1) COMPANY NAME AUTHORZING USE TO : 
2) Contact Name  /Address and E-mail address:
3) Name/Sales type of the ST Microcontroller product name  :
4) Name of USB end product : { if possible USB device string Product}4) Name of USB end-product :  { if possible USB device string  Product}

PID Booked in an internal ST Database

Final Step :Final Step :
ST will send the approval list to USB-IF
Approval by USB-IF
PID sent to the customer with a “letter form Agreement”

75

PID  sent to the customer with a letter form Agreement



End-to-end experience of customers

76


