174

Developing USB applications using the
STM32 ARM Cortex-M3 microcontroller

Anis BEN ABDALLAH
Embedded World 2011

\'l H[- i1

Agenda IS7;
Review of some important concepts in USB 2.0 standard

USB device controller implementations in the STM32
microcontroller series

Building blocks of a USB device application
Overview about the STM32 USB device firmware library

Overview about the USB Personal Healthcare Device
Class (PHDC) and Continua™ ready ST stack

ST PC software package for USB development

\'l NEIE it

\'l

Review of Important Concepts in USB 2.0
Standard

-

USB Speeds and bus components Kys

USB 2.0 speeds
Low speed: 1.5 Mbits/s
Full speed : 12 Mbits/s
High speed: 480 Mbits/s

USB keeps high compatibility at protocol level between
all supported speeds

Bus components
USB host or Root hub: initiates all the transaction on the bus

USB function: is a device with one or more interfaces that
expose capabilities to the host (ex: mouse, keyboard,..)

USB hub: allows to connect multiple devices to the USB host. It
has an upstream port for communication with the host and
multiple downstream ports for direct connection to devices

\'l NEIE it

USB Topology IS73

USB bus has a Tiered Star
topology

At the center of each star is a hub
with functions as end connections

A maximum of 127 devices can
be connected in the bus

Tier 7

A maximum of 5 hubs can be /
connected in series

the maximum cable length is /
smeter

USB Device attachment & speed detection IS7;

e} A

Full Speed Dewice Law Speed Device

O+ o+ O+ O+
HOST or HUB !E DEWICE HOST ar HUB ;E DEWICE
o- 4 o- 5 D-
Dc. DD DD
1 1

A
1.5k +- 5%

1.9K +- 5%

O-

e

| 18k +- 5%
18k +~ 9%

[T
18k +- 9%
18k +- 9%

Full/high Speed: Pull-up on D+ Low Speed: Pull-up on D-

The 1.5K pull-up allows the host to detect the device attachment and its
supported speed

High-speed device is detected first as full-speed device then high-speed
capability is detected through bus handshake mechanism called “chirp
sequence”

USB Device Power ﬁ

Two possible power configurations
Self-powered: device power provided from external power-supply
Bus-powered: power provided from VBUS (5v)

For bus-powered device, two options are possible:
Low-power devices :maximum power consumption is 100mA

High-power devices :maximum power consumption is 100mA
during bus enumeration and 500mA after configuration

During device enumeration, the device indicates to host
its power configuration (self-powered/bus-powered) and
Its power consumption in the device configuration
descriptor

\'l NEIE it

USB Suspend mode Kys

USB device should enter in USB Suspend mode when the bus is In
Idle state for more than 3 ms

In suspend mode, when the device is bus powered , the current
drawn from VBUS power shouldn’t exceed 2.5mA

USB host prevents device from entering in suspend mode by
periodically issuing Start of Frame (SOF) or Keep Alive for LS

For High-speed, SOF is sent every micro-frame: 125us +/- 65ns
For Full-speed, SOF is sent every frame: 1ms +/- 500ns

For Low-speed, Keep Alive (End of Packet) is sent every 1ms in
absence of low-speed data

Exist from Suspend mode can be
Initiated from host by issuing the resume signaling
Initiated from device by issuing the remote wakeup signaling

USB Transaction ﬁ

Token packet (SETUP, IN, OUT) always issued by the host, includes:
PID (IN: Device to host data transaction or SETUP/OUT: host to device data transaction)
Target device address
Target endpoint number
CRC

Data packet (DATAO, DATA1L, DATA2, MDATA) includes:
PID: DATAO, DATA1L, DATA2 or MDATA (DATAZ2 and MDATA are used only in HS mode)
Carries the data payload of a transaction sent by the host or device

DATA PID toggle used to synchronize HOST and DEVICE to avoid repeated packet transfer
in case of corrupted or lost handshake

CRC

Handshake packet (ACK, NAK, STALL, NYET)
ACK: packet reception acknowledged (sent from host or device)
NAK : packet reception not acknowledged (sent from device only)
STALL: control request not supported or endpoint halted (sent from device only)
NYET: device not ready to accept further packets (only for high-speed device)

Token packet Data packet (up to 1023 bytes)

PID | ADDRESS | ENDPOINT | CRC PI1D DATA CRC PID

Examples of IN/OUT transactions Lys

Host i Device Host : Device

1
1
1
i
1
| —
1
1
1
:
1

ouT | —

DATAQ | —

IN |—|

. «—— |DATAO

calat B
— |
P — :

OuUT |—|

DAL | +«—— [DATAL

1 1
1 1
1 ’ 1
i i
1 1
' !

\'l JElC i1

USB Transfer ﬁ

A USB transfer is composed of one or multiple bus transactions

Four types of USB transfers are defined:
Control: used for control and device configuration requests (ex: device
enumeration)
Bulk: used for data transfers with no guaranteed delivery rate (ex:
printer, mass-storage drive,..)
Interrupt: used for devices that need to be polled periodically for data
transfers (ex: mouse, keyboard, joystick)

Isochronous: used for data streaming applications, that requires a
guaranteed delivery rate, but no error checking (ex: audio, video
devices)

During each frame (in LS/FS) or micro-frame (in HS), the host will
schedule the needed transfers with different bandwidth allocation for
each transfer type

USB Control Transfer ﬁ

Used for standard control requests during device enumeration process or
during class operation

All devices should support control transfer through endpoint O (bidirectional)

It is given reserved bus bandwidth for 10% for FS/LS and 20% for HS

Control transfer has 3 stages

SETUP stage: one SETUP transaction for issuing the control request (ex: Get
Descriptor)

Optional DATA stage IN or OUT: one or multiple data transactions

Status stage: one IN or OUT transaction with a Zero Length data packet to check
if control transfer request executed correctly or not.

The maximum data packet size during the optional data stage is 8 bytes for
LS and 64 bytes in FS/HS

Transfer error management done through handshake packet and data PID
toggle mechanism

\'l JElE i __ B

Example of a USB Control Transfer

Get device descriptor standard request:

Tran ENDF
2 ET 1 1]

bRequest

wialle

wal nedes

GET_DESCRIPTOR |DEVICE type | 0x0000

174

DEVICE descriptor|| O ns

\l

G

sfer
Transaction

[

0xB4 ‘ 1 \

ENDP

R

bRequest
D->H| S |D[GET_DESCRIPTOR |DEVICE type| 00000 18 0x4B

el e

windex wlength (IS

<« SETUP stage

DATA stage IN

A

STATUS stage

ACK
098 1 0 1112 01 00 02 00 00 00 03 0xdB
ACHK,
0x96 1 0 ||0]el 04 17 4D 00 02 00 02 OxdB
ACK
0x96 1 0 1100 01 0x4B
QUT ENDP ACK | <
0xB7 1 0 1 0x4B

USB Bulk Transfer ﬁ

Used to transfer large amount of data without guaranteed delivery
rate (sending data to printer, drive,..)

Lowest priority transfer with no reserved bus bandwidth but can
occupy the full bandwidth if no other transfer on the bus

Supported only by full-speed and high-speed devices

Consist of one or more IN or OUT transactions during each
frame/micro-frame (unidirectional)

The max packet size is 64 bytes for FS and 512 bytes for HS

Transfer error management done through handshake packet and
data PID toggle mechanism

\'l JElE i __ B

USB Interrupt Transfer Kys

Interrupt transfers are used to poll devices to determine if they have data
that needs to be transferred (mouse, keyboard,..)

Interrupt IN or OUT data transfers are scheduled periodically withina
maximum polling period negotiated during device enumeration but host is
free to initiate more IN/OUT transactions if there is bandwidth available

limited reserved bandwidth for Low/Full speed devices

For low-speed the packet max length is 8 bytes with a guaranteed maximum
latency of up to 1 packet each 10 frames => 800 Bytes/s

For full-speed the packet max length is 64 bytes with a guaranteed maximum
latency of up to 1 packet each frame => 62.5 KBytes/s

High bandwidth with high-speed

For high-speed the packet max length is 1024 bytes with up to 3 packets each
micro-frame

Transfer error management done through handshake packet and data PID
toggle mechanism

\'l NEIE it

USB Isochronous transfers [71

Used mainly for streaming real-time data like audio and video

Needs a guaranteed bandwidth with a constant transfer rate but there is no error
checking

The requested bandwidth is negotiated between host and device during enumeration

Transfer is in one direction and can consist of one or more data OUT or IN
transactions with no handshake packet

In FS, the max packet length is 1023 bytes with a maximum of one packet per frame

In HS, the max packet length is 1024 bytes with a maximums of 3 packets per micro-frame

Devices that use isochronous transfer need in most of the cases to establish a
synchronous connection (ex: speaker, microphone, video camera,...)

Minimal or no data buffering

The synchronization between the data source (producer) and the sink (consumer) can
be achieved by
Having the source and sink clocks synchronized to the SOF packet

Doing a clock adaptation either on the source using a dedicated feedback pipeline or on the
sink clock based on the received data rate

\'l JElE i .

Host constraints for Interrupt &
Isochronous Transfers [71

The host may not be able to provide the requested bandwidth to
device, in this case the host will try other possible configurations with
lower bandwidth requirements (if provided by the device)

If still no bandwidth available, the host will refuse device
configuration

Host software may have some latency for processing data and
Issuing transfer requests on time due to other processes taking CPU
time

In order to avoid multiple SW calls for handling data to be transmitted
or received, large chunks of data transfers should be scheduled

\'l JElE i .

USB High-Speed mode specific features
PING/NYET Protocol IS7;

For control and bulk transfers, when a high-speed device
IS not ready to receive further data OUT packets, it can
send the NYET handshake

When the host receives the NYET handshake, it should
send the PING packet periodically to check if device Is
ready or not to resume receliving data packets

When ACK is received for a PING request, the host will
resume sending data packet

\'l NEIE it

USB High-Speed mode specific features
SPLIT Protocol IS7;

The SPLIT protocol is used when the HS host need to
communicate with a low/full speed device which is
connected to a high-speed hub

The host will do the data transaction with the HS hub In
high-speed, then the hub as a host will initiate the same
transaction in low/full speed with the device

The data transaction done by the host with the HUB Is
preceded with the Start SPLIT (SSPLIT) token

The host will later use CSPLIT token to retrieve the
device response from the HUB

Wicroelectror \

\'l

USB controllers in the STM32
microcontroller series

USB Device Controllers in STM32 series IYI

USB device controller is present in almost all STM32 ARM Cortex-
M3 series

Three hardware implementations are available
USB 2.0 full-speed device controller
USB 2.0 full-speed OTG dual role host/device controller
USB 2.0 high-speed OTG dual role host/device controller

Selection of the controller that can fit the application needs will
depend on

Needed USB transfer performance
Needed CPU performance

Available Flash and RAM memory size
Presence of other needed peripherals
Power consumption requirements
External components (BOM)

USB Device Controller in STM32 series IYI

USB 2.0 Full-speed Device Controller

USB 2.0 Full-speed Device Controller
Features IS7;

Avalilable on the following ARM Cortex-M3 platforms:

STM32F102: USB access line (48 MHz MCU, up to 16KB SRAM and
128KB of FLASH)

STM32F103: Performance line (72 MHz MCU, up to 96KB SRAM and
1MB FLASH)

STM32L152: Ultra-low power series (32 MHz MCU, up to 16KB SRAM
and 128KB of FLASH)

Malin features

\'l

USB 2.0 full-speed compliant

Up to 8 bi-directional endpoints (or 16 unidirectional endpoints)
Embedded full-speed analog transceiver

Supports all transfer modes (control, bulk, interrupt and isochronous)

Dedicated SRAM area of 512 bytes as packet memory that can be
shared among the needed endpoints

Double-buffering mechanism for isochronous and bulk transfers
USB Suspend/Resume with system entry/wakeup for low power mode

USB 2.0 Full-speed Device Controller

Block Diagram

SIE (Serial Interface Engine)
NRZI Encoding/Decoding
Synchronization & Pattern Recognition
Bit-stuffing and Handshake evaluation
PID & CRC generation and checking
Interrupt generation

Suspend Timer
Generate the Suspend interrupt when
no SOF is detected for 3ms

Packet Buffer Memory
512 bytes dedicated SRAM memory

The Arbiter allows dual access either
from packet buffer interface or APB
interface

3 interrupt vectors (lines)

Low priority interrupt for managing all
endpoints

High priority interrupt: can be used for
managing isochronous/double-buffered
endpoints only

Suspend/Resume interrupt

\'l HeHlr ()] i

PLL : Analog
Lo gee ! Transceiver
48 MHz T

I“"”““"”““"”':
RX-TX Clock : Control '
Recovery | =] REQiSters & Logic E
Suspend |_l[control : E
Timer _ ! 1
Endpoint | Interrupt !
48MHz SIE Selection 'l | Registers & Logic | !
USB Clock | APB Clock !
Domain Domain :
Packet : i
Buffer =t Endpoint !
Interface , Registers !
i ‘ _______________ :
P S ——— R P . ——

Packet Register Interrupt

Arbiter Buffer Mapper Mapper

Memory

APB Interface

USB 2.0 Full-speed Device Controller
Operation overview Ays

CTR Interrupt |s
USB Interrupt generated

j :: Arbiter <:>-: -

1L

EP2_TX

SRAM ﬁ EP2 RX

~_ _ One data packet
EP1 TX received

EP1 RX™

APB
Interface

ARM
Cortex M3 <:>

APB

EPO_TX

EPO_RX

Packet Memory Area

\'l H[- i1

USB 2.0 Full-speed Device Controller
Transactional model handling IS7;

After each successful transaction on any configured endpoint, an interrupt
(correct transfer CTR) is raised

The “Correct transfer” interrupt handler has to:

Check interrupt status bits to determine the endpoint on which the transaction has
occurred

For OUT/SETUP endpoints: copy received data packet from packet memory
area to application buffer for processing, then re-enable the endpoint to be able to
receive next incoming packet

For IN endpoints: copy next data to be transferred from application buffer to
packet memory area, then re-enable the endpoint to send the packet when the
next IN token comes from host

The hardware will automatically change the endpoint to NAK state after end
of each transaction, so it is up to application to re enable endpoint for next
transaction

The Transactional model has simple FW handling, but does not allow
multiple-packet transfer without CPU intervention after each transferred
packet

\'l NEIE it

USB 2.0 Full-speed Device Controller
Endpoint Configuration/Enabling IS7;

Before start of any transfer on one endpoint, the following
configuration should be done:
Endpoint address (only lower four bits)
Endpoint transfer type (control, bulk, interrupt or isochronous)
Endpoint TX or RX packet start address location in the packet memory
area

For OUT/SETUP endpoints the max receive packet size should be
configured

After the configuration, endpoint can be enabled for a transfer

IN endpoint:
Data can be copied from application buffer to endpoint PMA buffer
the ')I'X transfer count should be updated (the maximum is one max packet
size
Endpoint status should be changed to “ACK” to allow data transfer when IN
token arrives

OUT/SETUP endpoint:
Endpoint status should be changed to “ACK” to allow OUT/SETUP data
packet reception on endpoint

\'l JElE i __ B

USB 2.0 Full-speed Device Controller

Packet Memory Area

v

EP2_RX_COUNT }
EP2_RX_ADDR

EP2 _TX_COUNT

v

EP2 RX

ED] e

EP2_TX ADDR
EP1 RX COUNT

EERT T

EP1 RX_ADDR
EP1 TX_COUNT
EP1 TX_ADDR
EPO_RX_COUNT

v

EPO RX

EPO_RX_ADDR
EPO_TX_COUNT

A 4

ERPO X

\ 4

EPO_TX_ ADDR
Buffer Description Table (BTABLE)

\'l JElE i 0

Packet Memory Area

174

USB 2.0 Full-speed Device Controller
Double-Buffering mechanism IS7;

Double buffering is used to improve the transfer performance for isochronous and
bulk endpoints (in one direction only)

Consists of using two buffers in PMA (bufferO and bufferl), at any time CPU should
be accessing one buffer (for R/W) while USB IP is accessing the other buffer

USB swapping between bufferO and bufferl is done by hardware

In double-buffered bulk transfer, If application (CPU) is too slow to give its buffer to
USB, then NAK will be sent to host

EP1 BUFF1

USB CPU

EP1 BUFFO

PMA

\'l NEIE it

USB 2.0 Full-speed Device Controller
Packet Memory Area with double-buffering

|
;
}

EPO_RX_COUNT " EPORX
EPO_RX_ADDR

EPO_TX_COUNT ‘ EPOTX
EPO_TX_ADDR } .

Buffer Description Table (BTABLE) Packet Memory Area

USB 2.0 Full-speed Device Controller
Suspend/Resume Interrupt IS7;

When no SOF is detected for 3 ms, a suspend interrupt is generated

In the interrupt handler of the suspend interrupt, if bus powered
device, the MCU should enter in low power mode in order to lower its
power consumption

In order to achieve the best low power consumption, the STM32 can
enter in STOP mode (all peripherals and CPU clocks OFF)

A host resume/reset signaling detection can wakeup the MCU from
STOP mode

The device can also initiate a bus resume or “remote wakeup” using
external interrupt that can wakeup MCU from STOP mode

\'l JElE i .

USB Device Controller in STM32 series IYI

USB 2.0 Full-Speed OTG Host/Device
Controller

\'l NEIE O

USB 2.0 Full-Speed OTG Host/Device Controller r
Features Y/

Available on the STM32 connectivity line

STM32F105/7 : 72 MHz cortex M3 MCU with up to 64KB SRAM
and 256KB FLASH

Malin features

USB 2.0 Full-speed dual role Host/Device with OTG mode
support

Can be configured as host-only or device-only controller
Integrated Full-speed PHY with OTG mode support

Dedicated packet memory of 1.25 Kbytes with advanced FIFO
management and dynamic memory allocation
Device mode features

1 bidirectional control endpointO

Up to 3 IN and 3 OUT endpoints configurable to support Bulk,
Interrupt or isochronous transfer

1 shared FIFO for all OUT and control endpoints
Up to 3 dedicated TxFIFOs for IN and control endpoints

\'l NEIE it

USB 2.0 Full-Speed OTG Host/Device Controller
FIFO operation

AHB bus

POP

AHB
Interface PUSH

ARM Cortex M3

OTG_FS interrupt

CPU
/

Shared RxFIF

USB pushes received
packets into RXFIFO
while CPU pops packets

PUSH
S —
CPU pushes packets
into TXFIFO while USB :>
pops packets

EP1 TxFI

- POP

EP2 TxFIFO

USB
MAC

Full-Speed
Transceiver

D+

USB 2.0 Full-Speed OTG Host/Device Controller r
FIFO Configuration & Transfer initialization Y/

FIFOs configuration

The size of TXFIFOs and the shared RxFIFO can be configured
as needed by the application in a shared memory space of
1.25KBytes

Dynamic reconfiguration of the FIFOs sizes is possible

OUT/SETUP transfer initialization
Software should configure the transfer size
Enable the endpoint for packet reception
Wait packets to be received

IN transfer initialization
Software should configure the transfer size
Enable the endpoint
Start writing data to dedicated endpoint TxFIFO

\'l JElE i .

USB 2.0 Full-Speed OTG Host/Device Controller r
Interrupt handling Y/

Three important interrupts are used during
transfer
TXFIFONn empty interrupt: occurs when TxFIFO for

endpoint n is empty or half empty, used to inform
application that it can write more data to TxFIFO

Shared RxFIFO Queue level interrupt: raised when
there Is at least one received data packet inside the
shared RXFIFO

Correct Transfer Interrupt: occurs when the full
programmed transfer is finished on one endpoint

\'l NEIE it

USB Device Controller in STM32 series IYI

USB 2.0 High-Speed OTG Host/Device
Controller

USB 2.0 High-Speed OTG Host/Device Controller :—
Features Y/

Avalilable on the new STM32F2x Cortex-M3 ARM platform
Up to 120MHz MCU
Up to 128KBytes of SRAM and up to 1 Mbytes of FLASH

Up to two USB controllers
One Full-Speed USB dual role host/device OTG controller
One High-Speed USB dual role host/device OTG controller

Device features
High-speed/Full-speed Device support
1 bidirectional control endpointO

Up to 5 IN and 5 OUT endpoints configurable to support Bulk, Interrupt
or isochronous transfer

Dedicated DMA with access to internal SRAM or external memory bus

Dedicated packet memory of 4 Kbytes with advanced FIFO management
and dynamic memory allocation

Internal analog transceiver for Full-Speed mode

Needs connection to external transceiver for High-speed mode through
ULPI bus

\'l NEIE it

USB 2.0 High-Speed OTG Host/Device Controller :—
FIFO operation Y/

SRAM

AHB bus .
ARM Cortex M3 | OTG_FS interrupt

CPU

AHB Slave
Interface

USB pushes received
packets into RXFIFO
while DMA pops packets [----

AHB Master
Interface

Shared RxFIFO

IIIIIIIIII POP

: PUSH !

i — |

! h E

: DMA pushes packets | uLPI D+
i . into TXFIFO while USB ———————1 USB Li NHigh-Speed

i Interface

! EP1 TxFIFO

Slave pops packets MAC \'_E_‘/ Transceiver D-

USB 2.0 High-Speed OTG Host/Device Controller :—
DMA operation Y/

DMA allows to manage a full transfer without CPU
Intervention after each transaction

CPU is informed of end of transfer using the Correct transfer
Interrupt

A custom threshold FIFO level can be defined to trigger
data transfer

Transmit threshold TxFIFO trigger level: free space in TXFIFO
than can trigger an transfer from memory to FIFO

Receive threshold RxFIFO trigger level: a minimum receive
data level in receive FIFO that can trigger a transfer to memory

\'l JElE i __ B

Summary Comparison Table Kys

Controller USB Full-Speed USB OTG Full-speed USB OTG High-speed
Device controller dual role host/device dual role host/device
Supported Low/Full speed FuII_speed only in High/Full speed
speeds device mode
Number of ;%)rt])tlrdollrectlonal -1 bidirectional control
umber o 8 bidirectional -5IN
endpoints -3 IN o
-30UT -2 OUT
CPU speed Up to 72MHz Up to 72MHz Up to 120 MHz
FIFO support NO YES YES
Packet Memory 512 Bytes 1.25 KBytes 4 KBytes
DMA support NO NO YES
-Internal Full-Speed
PHY Internal Full-Speed | Internal Full-Speed | -External High-speed
(through ULPI bus)

Wicroelectror \

\'l

Building Blocks of a USB Device
Application

Building Blocks of a USB Application IS73

-
r

USB controller Hardware

\'l NEIE O

USB Descriptors

Device
descriptor
Configuration Configuration
desclrlptor descriptor
‘ Interface
Interface Interface descriptor
descriptor descriptor

smm pm I Em

Device Descriptor: includes information of the device (PID, VID, Class) and the number of

supported configurations
Configuration Descriptor:

Includes the power configuration information, the number of supported interfaces in this configuration

Configurations are mutually exclusive

Interface Descriptor: provides information about function or feature that device implements (class,

subclass,...) also it indicates the number of endpoint it supports

Endpoint Descriptor: provides information about the endpoint (address, type, max packet size)

\'l NEIE it

Device Descriptor

Configuration Descriptor

Interface descriptor

Endpoint Descriptor

Class Layer Kys

A class specifies the operation of group of USB devices that have
similar functionalities, ex:
Audio class (speaker, microphone)

Communication device class (virtual COM-port, modems, Ethernet
adapters,...)
Human Interface Device class (mouse, keyboard, joystick,...)

Defining a USB class allows to have unique host driver for all devices
belonging to the class

A USB class defines
Required or optional endpoints
Needed Interfaces
Class-specific descriptors
Required values for fields in the standard descriptors
Class Control requests

Format of data to be transferred and optionally the protocol layer for data
transfer (ex Bulk-only transfer for Mass-Storage class)

\'l NEIE it

Human Interface Device (HID) IS7]

HID class is mainly intended for devices that have interaction with human
Inputs (moving a joystick, a mouse, pressing a keyboard...) but can be used
for other application

Supported natively by MS Windows operating system

HID needs one IN interrupt endpoint to transfer data, the host will poll the IN
endpoint periodically to check if device has data to transfer

Transferred data is formatted in fixed structure called HID Report

HID defines six specific control requests
Get/Set Report: allows to get/send report to device
Set/Get Idle: allows to get/set the idle rate
Set/Get Protocol: allows to get/set used protocol (boot or report protocol)

Two class specific descriptors are defined
HID class descriptor
HID Report descriptor

\'l JElE i .

USB Control Transfer Management

Should implement a state machine for managing the three stages of a
control transfer on endpointO

SETUP stage
Optional Data IN or OUT stage
Handshake stage

During the SETUP stage, the received request can be
Standard USB Request as defined in USB spec Chapter 9
Standard Class USB request (HID, CDC,...)

Vendor Class USB request

In case a request is not supported, the control endpoint should send a
STALL handshake packet to host

A control request can target
Device
Interface
Endpoint

\'l NEIE it

SETUP request Structure

Standard USB Control Requests Kys

Control requests are defined in chapter 9 of the
USB specification

Used mainly during the enumeration phase by
the host to get needed descriptors information
about the device and to select the needed
configuration

Some standard requests (Get Feature/ Set
Feature, Get Status) may be used as a class
requests to get/set class specific features

Standard USB control Requests Kys

USB Low Level Driver [71

Functions/Macros that do direct access to USB block registers for
Device global initializations (ex: device address, speed,..)
Endpoints initialization (ex: address, transfer type, ...)
Transfer initialization
Packet memory area or FIFO access

Manage the USB interrupts with callbacks to application layers
Global device interrupts (USB Reset, USB suspend,..)

Endpoints transfer related interrupts (correct transfer interrupt, TXFIFOn
empty,...)

Power management functions during Suspend/resume
Entry in low-power mode during suspend mode
Remote wakeup management

\'l

STM32 USB device firmware library

174

Allows to easily get started with USB device development on STM32
platforms

USB Device Developer Kit

The kit provides all the needs firmware blocks including

Low level USB drivers

Firmware for handling the standard control requests (chapter 9)

USB class layer implementation with demos running on evalboards for
Mass-Storage
HID
CDC Virtual COM port
Audio (speaker, microphone)
Device Firmware Upgrade

The Library allows easy development of Custom vendor class

All the class implementations are validated using the USB Command
Verifier tool provided by the USB-IF

\'l JElE i .

Folder Organization of the STM32 USB
Developer Kit IS7;

Libraries
CMSIS : Cortex Microcontroller Software Interface = ' EMAEZNIE SRR MRS
Standard files (startup files, NVIC, clock config) 2 _htmresc
STM32_USB-FS-Device Driver: Includes the =) Libraries
USB low level driver + firmware for handling) CMsIs
control transfer and standard control requests = |5 5TM32_USE-FS-Device_Driver
STM3210x_StdPeriph_Driver: low level drivers) inc
for standard peripherals (timer, clocks, ..)) sre
) STM3ZF10%_StdPeriph_Driver
Project = [3) Project
Implementation for the various class demos) Audio_Speaker
Each demo includes workspaces for different) Audio_Streaming
third-party toolsets (IAR, KEIL, RIDE, HITEX,) Custam_HID
Attolic)) Device_Firmware_Upgrade
) JovystickMaouse
Utilities) Mass_Storage
Evalboard utilities (buttons, LCD, SD card 2 tirtual_COM_Port

access,..)) Utilities

\'l NEIE it

STM32_USB-FS-Device Driver
Low Level Driver

The folder includes low level drivers for:
The USB Full-speed device controller
The OTG Full-speed controller (only for device mode)

Source files for the OTG Full-speed device controller:

file Description
otg _fs_int.c All USB Interrupt handling with callbacks to application layer
otg fs_pcd.c | High level functions for Endpoint access (Read/Write, Open/Close,..)
otg fs cal.c Core access layer (function doing register access for global device

configuration, endpoint initializations, transfer initializations, FIFOs R/W)

otg fs _dev.c

Wrapper for device/endpoints high level access, implemented for
compatibility reason with the USB full-speed controller

Usb_sil.c

Serial Interface Layer (SIL) :Wrapper for endpoint R/W access
implemented for compatibility reason with the USB full-speed controller

\'l NeIE

STM32_USB-FS-Device Driver r
Control transfer & Library initialization Y/

All the handling of control transfer and the standard USB
requests is done in file usb_core.c

The implementation allows the handling of the standard
control requests and the dispatching to class layer when
receiving a class control request

File usb_init.c includes one function USB_ Init() that
should be called to initialize the library structures and to
do needed device initialization (control configuration,
memory allocation,...)

\'l NEIE it

Class Layer Implementation Kys

The various USB classes implementations are found in
“Project” folder

For each class, the class specific control requests are
Implemented in file usb_prop.c

Non-control endpoints correct transfer interrupt handling
IS done in file usb_endp.c

The USB descriptors for the device are implemented in
file usb_desc.c

Device power management is implemented in file
usb _pwr.c

\'l NEIE it

Overview about PHDC class and Continua
Stack

\'l NEIE O

Continua Health Alliance [71

The Continua Health Alliance is an open industry
consortium with more than 200 member companies
around the world

Their Mission is to establish an eco-system of inter-
operable personal health systems in the healthcare
sector.

ST is a contributing member
ST is allowed to use the Continua Logo Continua

After certification the logo can be used on products.

V'l AR [_H
63

4® Continua Personal Telehealth

Glucose
meter

Health & Wellness

» Weight loss

» Fithess

« Email / chat / video

» Appt scheduling

» Personal Health Records

Healthy
family

Disease Management

» Vital sign monitoring (RPM)

» Medication reminders and
compliance

» Trend analysis and alerts

» Connect with family care
givers

Aging Independently

» An adult child helping their
elderly parents age gracefully
in their own home.

| AL

Health

Disease

Weight loss Records) L]]
and fitness Healthcare ¥ management » Basic life monitoring as
coaching Professionals service

appropriate (ADL)

Family
care givers
December 12, 2006 3

ﬁ“ Continua
SENSORS
Weight -
Home - Scale |
sensing & —=
control ||
= Blood- |1}
oy pressure !
Sl
Bed / Chair Gluchss
Sensors |
ﬂ X
P
Implant
Monitors Pulse
Oximeter -L
1! '\._
Baby I'
Monitors ' Spirometer
N
PERS Medication

@ Tracking éﬁ}

Consumer

Pedometer :

Electronics %
Fitness ()
equipment d

December 12, 2006

Personal Health Eco-system

CONNECTIVITY

@ ZigBee"
€3 Bluetooth

A\
@ﬁ'};fﬁ
MICS /| MEDS

Ethernet

L) L
Cgjan®

(\IHEIMEF'LLIE“

AGGREGATION
COMPUTATION

(gg “4enjj2d ‘s10d)

Aggregator

M Hd O MLI1S3N

SERVICES

Healthcare
Provider
Service

Disease
Management
Service

1
1
1
1

Personal
Health
Record
Service

Implant
Monitoring
Service

ST Healthcare Library features

Thermometer /

ey $IEEE
= 11073-10404 = Pulse Oximeter

= 11073-10406 = Pulse / Heart Rate

= 11073-10407 = Blood Pressure

= 11073-10408 = Thermometer

= 110/73-10415 = Weighing Scale

= 11073-10417 = Glucose

= 11073-10441 = Cardiovascular Fitness Monitor
= 11073-10442 = Strength Fitness Equipment

= 11073-10471 = Independent Living Activity

Cardiovascular = 11073-10472 = Medication Monitor

and Strength _ 5 : = 11073-20601 = Base Framework Protocol
Fitness Monitor Ty

Independent ﬁ
Living Activity

Medication
Adherence

Pulse
Oximeter

Pulse /
Blood Pressure

Weight
Scale

Glucose
Meter

Transport Independent

™

Personal Health Device
Class Specification

Personal
Health System

Cell Phone [":

-y
f

&

.

Set fop Box
N\, o2
Aggredétor

Thermometer Demo based on latest CESL

Continua Manager,

File Edit Help

Current State: Operating

2
Select Shim Directory: IC:'l,Program FilesiCESL_Binaryibind] _ 1
z
! 5 i . m
Device List Device Information
Device Mame |Transp0rt Device Specializatio | 4ddress Connected to: ¥ASC-MD3
i 53 Medic fgent LSE Thermaometer

System Model: Thermometer
System Manufacturer: STMicroelectronics
System ID: 0x31-0x32-0x33-0x34-0x35-0x36-0x37-0x38

a D m

- Body Temp.: 37 °C
Disconnect || Uriassociate Abort z f={l ¢

Output

- Timestamp: 2:47:00 pm on Thu April 15 2010 B
- Body Temp.: 37 °C

[J2P0 I UDIELLIOJUY 33143

) - Timestamp: 2:47:00 pm on Thu April 15 2010
I - Body Temp.: 37 °C

- Timaskamp: 2:47:00 pron Tho April 15 2010

1]

0x388080: AssoriateMessages, ofSA3)EventR eceiveHandlerConnection Event received
0x387008: ManagerFaM. o626 MorCheckingonfighccepting Config - Entering Operating state

' .) ,V 6 Transport: Enabled
f“Contmua Sy v g &

HEALTH ALLIANCE usel o .
ugto

Clear all Devices From the List

bmp - Paink

Healthcare Firmware stack (1/2)

\'l

STM32L USB

(*) Optional classes not linked to Medical

174

Healthcare Firmware stack (3/3) Kys

User Application Main.c/h
(Thermo.c/h, Gluco.c/h, ...)

Dev_Spec_104xx.c/h ServLayer.c/h

Transmission Template & .
Object service handlers %) Service Model Layer

USB Desc USB_endp USB istr USB_prop

\'l

ST offer for PC software USB

>

Performance & Features

IIIIIIIIIIIIIIIIIIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

USB Offer with STM32 (F1, L & F2)

Free VID/PID Sub-licensing

Service for customers

ceRTifien For
Windows
Windows"2000 Vista®

DFU Driver Certified

Free Drivers Resell at
WHQL

Windows Software
Kit

CDC Driver Certified JPtae
Windows Host Driver Kit: WHOL Qualified T
Certified Driver 3.0.0 , XP Vista -7
Windows7 (x86 & x64) Pt V1.0.0
DFuSe (Demo + Sources) -7
<8 vt USB Host library
6‘15‘6 e STM32F105/7
(a{\(\g e cEATIFSIES USB Mass storage,
0 e n HID (mouse & Keyboard)
o \NS O e - On-The-Co
\N\V\d JPioal
L=l qare Healthcare
f‘?‘\(

{113 -

USB Developer Kit
Device
3.2.x
STM32F102/3
DFU, Joystick, Custom HID, Mass-storage,
Audio speaker, Audio Streaming,
Virtual com Port

USB PHDC Class & Continua
STM32L15x

Thermometer, Glucose agents f“

Continua

USB Developer Kit
Device
3.3.x
STM32F102/3 & STM32L
DFU, Joystick, Custom HID, Mass-storage, Audio
speaker, Virtual com Port

2011

Custom/Bulk Drivers T

S USB

|Jan 2012

\'l NEIE it

71

New PC Windows Driver (1/2) Lys

Description :
USB driver for Microsoft operating systems.
Designed to work with USB DFU and all specific USB classes

Allow access to the Control, Interrupt and Bulk pipes and is an
alternative to WinUSB driver without limitations.

WHQL Certified and in production
Used for STMicroelectronics USB Bootloader (DFU)

At many customers since 2008.

Full documented APl and Reference examples with Visual C++ (6,
2005, 2008 and 2010 : x86 and x64)

Applications usage:
Device Firmware Upgrade STMicroelectronics Extension (DfuSe)

Vendor Class involving Bulk/Interrupts Pipes
Any classes, except those with Isochronous Pipes.

\'l NEIE it

72

New PC Windows Driver (2/2) Lys

Compatible Operating Systems
MS Windows 98SE

MS Windows 2000 lLl'U

MS Windows XP (x86 & x64) Desigg“

MS Windows Vista (x86 & x64) Moosors || (EHO T | [
MS Windows Seven (x86 & x64) bbb viste |

WHQL Certification Added Value to our customers
Providing quality end-to-end experience of customers

Retailers expect the logo on devices & concentrate on own business
Consumers & customers look for logo-qualified products

On-line Windows Update by clicking the Update Driver button in Device Manager

\'l NEIE DI 73

Microsoft Logo Certification Lys

4

Windows Logo Verification Report: Approved

Submission ID: 1377238

Submission Date: 11/23/2009

Logo Completion Date: 11/24/2009

Company: STMicroelectronics

Product Name: STMicroelectronics Device

Category: Device

Subcategory: Unclassified

Qualification Level: Signature Only - Microsoft Windows 2000 family - Unclassified

Signature Only - Microsoft Windows XP family, x86 - Unclassified

Signature Only - Microsoft Windows XP family, x64 - Unclassified

Signature Only - Microsoft Windows Vista family, x86 - Unclassified

Signature Only - Microsoft Windows Vista family, x64 - Unclassified

Signature Only - Device - Compatible with Windows 7

Signature Only - Device - Compatible with Windows 7 x64
Marketing Names: N/A

Additional Information:
Firmware version: 3.1.0

\'l H[- i1 74

New Service for STM32 USB small customers [7[

Description :
USB “PID” and VID (0x0483) from STMicroelectronics Sub-licensing

Program Process
Receive Requests from our Customers thru sales offices with customer
details:
1) COMPANY NAME AUTHORZING USE TO :
2) Contact Name /Address and E-mail address:
3) Name/Sales type of the ST Microcontroller product name :
4) Name of USB end-product : {if possible USB device string Product}

PID Booked in an internal ST Database

Final Step :
ST will send the approval list to USB-IF
Approval by USB-IF
PID sent to the customer with a “letter form Agreement”

\'l NEIE DI , 75

End-to-end experience of customers

-_ Mitrnsc:ft LT -dnws Up‘date - WIII;‘]DWS Internet Exp‘lnrer - Iﬂlﬂ
_‘m - Iﬂ hittp f fvavawe update, microsoft, comwindowsupdate fvé def aulk, aspx?ln=an-us j |E| ‘E‘ |Z| Ib Live Search |}J '| i

| Ele Edt View Favortes Tools Help i

<> Favorites | 9 8 suggested Sites @ | Free Hotmal @& | Web Slice Gallery =

“ Microsoft Windows Update | |

Quick Links | Home | Worldvide

Search Microsoft.com for:

4% Windows o
T |

windows Family | Windows Marketplace | Office Family Fle Action View Help 1
Windows Update Home L"_.“ Y L ‘ ‘ é ‘ @ ‘ = E a |
&) w3zt Driver File Details x|

. Review Your Instz 1 Conputer

)) g Disk drives
S 2 Diplay atiptas S%=% STM Device in DFU Mode
Restore hidden updates Installation Summary \é DWDCD-ROM drives
Change settings 42 Floppy disk contrallers
= & Successful: 1 {2 IDE ATA/ATARL contralers Diriveer file:

Q) Faied: [1} -z Keyboards

Get help and support &) Remaining: o

Use administrator options

9 Successful Upi

ics STI

o

), Sound, video and game controllers
z System devices

G Uniiversal Serial Bus Lontrullers
- B2 Generic USE Hub
S Standard Enhanced FCT o LISE Host Contraller
= Skandard Universal PCT ba LISE Host Cantroller
& Standard Universal PCT to USE Host Contraller
b Standard Universal PCT ko USE Host Controller
b Standard Universal PCT ko USE Host Controller

STMicroelectronics - Other

To review all updates you've i

Provider: STMicroelectionics

File: wersion: 30B

1156 Riaak Hub Copyright: Copyright [C] 5T Microelectronics 20039
&G USE Root Hub o _ ;
4 e Rggt sz Digital Signer. Microsoft wWindows Hardware Compatibility

& USE Raot Hub
& USE Raot Hub

Windowus Update Privacy Statement

2009 Microsoft Corporation, All rights reserved, Terms of Use | Trademarks | Privacy Statement W

[l [T [[[& meerme [~ [Rww -
#start| Y 2-pat || @ Microsoft windows u.. [noem

