Introduction

Most designers are familiar with oscillators (Pierce-Gate topology), but few really understand how they operate, let alone how to properly design an oscillator. In practice, most designers do not even really pay attention to the oscillator design until they realize the oscillator does not operate properly (usually when it is already being produced). This should not happen. Many systems or projects are delayed in their deployment because of a crystal not working as intended. The oscillator should receive its proper amount of attention during the design phase, well before the manufacturing phase. The designer would then avoid the nightmare scenario of products being returned.

This application note introduces the Pierce oscillator basics and provides some guidelines for a good oscillator design. It also shows how to determine the different external components and provides guidelines for a good PCB for the oscillator. This document finally contains an easy guideline to select suitable crystals and external components, and it lists some recommended crystals (HSE and LSE) for STM32™ and STM8A/S microcontrollers in order to quick start development.
Contents

1 Quartz crystal properties and model .. 6

2 Oscillator theory ... 8

3 Pierce oscillator ... 9

4 Pierce oscillator design ... 10
 4.1 Feedback resistor RF ... 10
 4.2 Load capacitor C_L ... 11
 4.3 Gain margin of the oscillator .. 11
 4.4 Drive level DL and external resistor RExt calculation 12
 4.4.1 Calculating drive level DL .. 12
 4.4.2 Another drive level measurement method......................... 13
 4.4.3 Calculating external resistor RExt 13
 4.5 Startup time ... 14
 4.6 Crystal pullability ... 14

5 Easy guideline for the selection of suitable crystal and external components .. 15

6 Some recommended crystals for STM32™ microcontrollers 16
 6.1 HSE part .. 16
 6.1.1 Part numbers of recommended 8 MHz crystals 16
 6.1.2 Part numbers of recommended ceramic resonators 17
 6.1.3 Part numbers of recommended 25 MHz crystals
 (Ethernet applications) ... 17
 6.1.4 Part numbers of recommended 14.7456 MHz crystals
 (audio applications) .. 18
 6.2 LSE part .. 19

7 Some recommended crystals for STM8A/S microcontrollers 20
 7.1 Part numbers of recommended crystal oscillators 20
 7.2 Part numbers of recommended ceramic resonators 20

8 Some PCB hints ... 21
9 Conclusion ... 22
10 Revision history .. 23
List of tables

Table 1. Example of equivalent circuit parameters .. 7
Table 2. Typical feedback resistor values for given frequencies 10
Table 3. EPSON® .. 16
Table 4. HOSONIC ELECTRONIC ... 16
Table 5. CTS® .. 16
Table 6. FOXElectronics® ... 16
Table 7. Recommendable conditions (for consumer) .. 17
Table 8. HOSONIC ELECTRONIC ... 17
Table 9. FOXElectronics® ... 17
Table 10. CTS® .. 17
Table 11. FOXElectronics® ... 18
Table 12. ABRACON™ .. 18
Table 13. Recommendable crystals .. 19
Table 14. KYOCERA .. 20
Table 15. Recommendable conditions (for consumer) .. 20
Table 16. Recommendable conditions (for CAN-BUS) .. 20
Table 17. Document revision history .. 23
List of figures

Figure 1. Quartz crystal model. ... 6
Figure 2. Impedance representation in the frequency domain. 6
Figure 3. Oscillator principle ... 8
Figure 4. Pierce oscillator circuitry .. 9
Figure 5. Inverter transfer function ... 10
Figure 6. Current drive measurement with a current probe 12
Figure 7. Recommended layout for an oscillator circuit 21
1 Quartz crystal properties and model

A quartz crystal is a piezoelectric device transforming electric energy to mechanical energy and vice versa. The transformation occurs at the resonant frequency. The quartz crystal can be modeled as follows:

Figure 1. Quartz crystal model

\[C_0: \text{represents the shunt capacitance resulting from the capacitor formed by the electrodes} \]
\[L_m: \text{ (motional inductance) represents the vibrating mass of the crystal} \]
\[C_m: \text{ (motional capacitance) represents the elasticity of the crystal} \]
\[R_m: \text{ (motional resistance) represents the circuit losses} \]

The impedance of the crystal is given by the following equation (assuming that R_m is negligible):

\[Z = \frac{jw}{\frac{1}{w^2L_mC_m} - \frac{w^2}{(C_0 + C_m) - w^2L_mC_mC_0}} \] (1)

Figure 2 represents the impedance in the frequency domain.

Figure 2. Impedance representation in the frequency domain

Fs is the series resonant frequency when the impedance Z = 0. Its expression can be deduced from equation (1) as follows:

\[F_s = \frac{1}{2\pi \sqrt{L_mC_m}} \] (2)
Fa is the anti-resonant frequency when impedance Z tends to infinity. Using equation (1), it is expressed as follows:

\[F_a = F_s \sqrt{1 + \frac{C_m}{C_0}} \quad (3) \]

The region delimited by Fs and Fa is usually called the area of parallel resonance (shaded area in Figure 2). In this region, the crystal operates in parallel resonance and behaves as an inductance that adds an additional phase equal to 180° in the loop. Its frequency \(F_p \) (or \(F_L \): load frequency) has the following expression:

\[F_p = F_s \left(1 + \frac{C_m}{2(C_0 + C_L)} \right) \quad (4) \]

From equation (4), it appears that the oscillation frequency of the crystal can be tuned by varying the load capacitor \(C_L \). This is why in their datasheets, crystal manufacturers indicate the exact \(C_L \) required to make the crystal oscillate at the nominal frequency.

Table 1 gives an example of equivalent crystal circuit component values to have a nominal frequency of 8 MHz.

<table>
<thead>
<tr>
<th>Equivalent component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_m)</td>
<td>8 Ω</td>
</tr>
<tr>
<td>(L_m)</td>
<td>14.7 mH</td>
</tr>
<tr>
<td>(C_m)</td>
<td>0.027 pF</td>
</tr>
<tr>
<td>(C_0)</td>
<td>5.57 pF</td>
</tr>
</tbody>
</table>

Using equations (2), (3) and (4) we can determine \(F_s \), \(F_a \) and \(F_p \) of this crystal:

\(F_a = 7988768 \text{ Hz} \) and \(F_a = 8008102 \text{ Hz} \).

If the load capacitance \(C_L \) at the crystal electrodes is equal to 10 pF, the crystal will oscillate at the following frequency: \(F_p = 7995695 \text{ Hz} \).

To have an oscillation frequency of exactly 8 MHz, \(C_L \) should be equal to 4.02 pF.
2 Oscillator theory

An oscillator consists of an amplifier and a feedback network to provide frequency selection. Figure 3 shows the block diagram of the basic principle.

Figure 3. Oscillator principle

Where:
- $A(f)$ is the complex transfer function of the amplifier that provides energy to keep the oscillator oscillating.
 \[A(f) = |A(f)| \cdot e^{j\alpha(f)} \]
- $B(f)$ is the complex transfer function of the feedback that sets the oscillator frequency.
 \[B(f) = |B(f)| \cdot e^{j\beta(f)} \]

To oscillate, the following Barkhausen conditions must be fulfilled. The closed-loop gain should be greater than 1 and the total phase shift of 360° is to be provided:

\[|A(f)| \cdot |B(f)| \geq 1 \quad \text{and} \quad \alpha(f) + \beta(f) = 2\pi \]

The oscillator needs initial electric energy to start up. Power-up transients and noise can supply the needed energy. However, the energy level should be high enough to trigger oscillation at the required frequency. Mathematically, this is represented by $|A(f)| \cdot |B(f)| \gg 1$, which means that the open-loop gain should be much higher than 1. The time required for the oscillations to become steady depends on the open-loop gain.

Meeting the oscillation conditions is not enough to explain why a crystal oscillator starts to oscillate. Under these conditions, the amplifier is very unstable, any disturbance introduced in this positive feedback loop system makes the amplifier unstable and causes oscillations to start. This may be due to power-on, a disable-to-enable sequence, the thermal noise of the crystal, etc. It is also important to note that only noise within the range of serial-to-parallel frequency can be amplified. This represents but a little amount of energy, which is why crystal oscillators are so long to start up.
3 Pierce oscillator

Pierce oscillators are commonly used in applications because of their low consumption, low cost and stability.

Figure 4. Pierce oscillator circuitry

Inv: the internal inverter that works as an amplifier
Q: crystal quartz or a ceramic resonator
\(R_F \): internal feedback resistor
\(R_{\text{Ext}} \): external resistor to limit the inverter output current
\(C_{L1} \) and \(C_{L2} \): are the two external load capacitors
\(C_s \): stray capacitance is the addition of the MCU pin capacitance (OSC_IN and OSC_OUT) and the PCB capacitance: it is a parasitical capacitance.
4 Pierce oscillator design

This section describes the different parameters and how to determine their values in order to be more conversant with the Pierce oscillator design.

4.1 Feedback resistor R_F

In most of the cases in ST microcontrollers, R_F is embedded in the oscillator circuitry. Its role is to make the inverter act as an amplifier. The feedback resistor is connected between V_{in} and V_{out} so as to bias the amplifier at $V_{out} = V_{in}$ and force it to operate in the linear region (shaded area in Figure 5). The amplifier amplifies the noise (for example, the thermal noise of the crystal) within the range of serial to parallel frequency (F_a, F_b). This noise causes the oscillations to start up. In some cases, if R_F is removed after the oscillations have stabilized, the oscillator continues to operate normally.

Figure 5. Inverter transfer function

Table 2 provides typical values of R_F.

Table 2. Typical feedback resistor values for given frequencies

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Feedback resistor range</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.768 kHz</td>
<td>10 to 25 MΩ</td>
</tr>
<tr>
<td>1 MHz</td>
<td>5 to 10 MΩ</td>
</tr>
<tr>
<td>10 MHz</td>
<td>1 to 5 MΩ</td>
</tr>
<tr>
<td>20 MHz</td>
<td>470 kΩ to 5 MΩ</td>
</tr>
</tbody>
</table>
4.2 Load capacitor C_L

The load capacitance is the terminal capacitance of the circuit connected to the crystal oscillator. This value is determined by the external capacitors C_{L1} and C_{L2} and the stray capacitance of the printed circuit board and connections (C_s). The C_L value is specified by the crystal manufacturer. Mainly, for the frequency to be accurate, the oscillator circuit has to show the same load capacitance to the crystal as the one the crystal was adjusted for. Frequency stability mainly requires that the load capacitance be constant. The external capacitors C_{L1} and C_{L2} are used to tune the desired value of C_L to reach the value specified by the crystal manufacturer.

The following equation gives the expression of C_L:

$$C_L = \frac{C_{L1} \times C_{L2}}{C_{L1} + C_{L2}} + C_s$$

Example of C_{L1} and C_{L2} calculation:

For example if the C_L value of the crystal is equal to 15 pF and, assuming that $C_s = 5$ pF, then:

$$C_L - C_s = \frac{C_{L1} \times C_{L2}}{C_{L1} + C_{L2}} = 10 \text{ pF}.$$ That is: $C_{L1} = C_{L2} = 20 \text{ pF}$.

4.3 Gain margin of the oscillator

The gain margin is the key parameter that determines whether the oscillator will start up or not. It has the following expression:

$$\text{gain margin} = \frac{g_m}{g_{m\text{crit}}},$$

where:

- g_m is the transconductance of the inverter (in mA/V for the high-frequency part or in μA/V for the low-frequency part: 32 kHz).
- $g_{m\text{crit}}$ ($g_{m\text{critical}}$) depends on the crystal parameters.

Assuming that $C_{L1} = C_{L2}$, and assuming that the crystal sees the same C_L on its pads as the value given by the crystal manufacturer, $g_{m\text{crit}}$ is expressed as follows:

$$g_{m\text{crit}} = 4 \times \text{ESR} \times (2 \pi f)^2 \times (C_0 + C_L)^2,$$

where ESR = equivalent series resistor.

According to the Eric Vittoz theory: the impedance of the motional RLC equivalent circuit of a crystal is compensated by the impedance of the amplifier and the two external capacitances.

To satisfy this theory, the inverter transconductance (g_m) must have a value $g_m > g_{m\text{crit}}$. In this case, the oscillation condition is reached. A gain margin of 5 can be considered as a minimum to ensure an efficient startup of oscillations.

For example, to design the oscillator part of a microcontroller that has a g_m value equal to 25 mA/V, we choose a quartz crystal (from Fox) that has the following characteristics:

- frequency = 8 MHz,
- $C_0 = 7$ pF,
- $C_L = 10$ pF,
- ESR = 80 Ω. Will this crystal oscillate with this microcontroller?

Let us calculate $g_{m\text{crit}}$:

$$g_{m\text{crit}} = 4 \times 80 \times (2 \pi \times 8 \times 10^6)^2 \times (7 \times 10^{-12} + 10 \times 10^{-12})^2 = 0.23 \text{ mA/V}$$
Calculating the gain margin gives:

\[
\text{gain margin} = \frac{g_m}{g_{\text{crit}}} = \frac{25}{0.23} = 107
\]

The gain margin is very sufficient to start the oscillation and the “gain margin greater than 5” condition is reached. The crystal will oscillate normally.

If an insufficient gain margin is found (gain margin < 5) the oscillation condition is not reached and the crystal will not start up. You should then try to select a crystal with a lower ESR or/and with a lower \(C_L \).

4.4 Drive level DL and external resistor \(R_{\text{Ext}} \) calculation

The drive level and external resistor value are closely related. They will therefore be addressed in the same section.

4.4.1 Calculating drive level DL

The drive level is the power dissipated in the crystal. It has to be limited otherwise the quartz crystal can fail due to excessive mechanical vibration. The maximum drive level is specified by the crystal manufacturer, usually in mW. Exceeding this maximum value may lead to the crystal being damaged.

The drive level is given by the following formula:

\[
\text{DL} = \text{ESR} \times I_{Q}^2
\]

- ESR is the equivalent series resistor (specified by the crystal manufacturer):
 \[
 \text{ESR} = R_m \times \left(1 + \frac{C_0}{C_L}\right)^2
 \]

- \(I_Q \) is the current flowing through the crystal in RMS. This current can be displayed on an oscilloscope as a sine wave. The current value can be read as the peak-to-peak value \((I_{PP}) \). When using a current probe (as shown in Figure 6), the voltage scale of an oscilloscope may be converted into 1mA/1mV.

Figure 6. Current drive measurement with a current probe

So as described previously, when tuning the current with the potentiometer, the current through the crystal does not exceed \(I_{Q\text{max}} \text{ RMS} \) (assuming that the current through the crystal is sinusoidal).

Thus \(I_{Q\text{max}} \text{ RMS} \) is given by:

\[
I_{Q\text{max}} \text{ RMS} = \sqrt{\frac{\text{DL}_{\text{max}}}{\text{ESR}}} = \frac{I_{Q\text{max}} \text{ PP}}{2\sqrt{2}}
\]
Therefore the current through the crystal (peak-to-peak value read on the oscilloscope) should not exceed a maximum peak-to-peak current \(I_{Q_{\text{max}} \text{PP}} \) equal to:

\[
I_{Q_{\text{max}} \text{PP}} = 2 \times \frac{\sqrt{2 \times D L_{\text{max}}}}{\text{ESR}}
\]

Hence the need for an external resistor \(R_{\text{Ext}} \) (refer to Section 4.4.3) when \(I_{Q} \) exceeds \(I_{Q_{\text{max}} \text{PP}} \). The addition of \(R_{\text{Ext}} \) then becomes mandatory and it is added to ESR in the expression of \(I_{Q_{\text{max}}} \).

4.4.2 Another drive level measurement method

The drive level can be computed as:

\[D L = I_{Q_{\text{RMS}}} \times \text{ESR}, \text{ where } I_{Q_{\text{RMS}}} \text{ is the RMS AC current.} \]

This current can be calculated by measuring the voltage swing at the amplifier input with a low-capacitance oscilloscope probe (no more than 1 pF). The amplifier input current is negligible with respect to the current through \(C_{L1} \), so we can assume that the current through the crystal is equal to the current flowing through \(C_{L1} \). Therefore the RMS voltage at this point is related to the RMS current by:

\[I_{Q_{\text{RMS}}} = 2\pi F \times V_{RMS} \times C_{tot}, \text{ with:} \]

- \(F = \text{crystal frequency} \)
- \(V_{RMS} = \frac{V_{pp}}{2\sqrt{2}} \), where: \(V_{pp} \) is the voltage peak-to-peak measured at \(C_{L1} \) level
- \(C_{tot} = C_{L1} + (C_s/2) + C_{\text{probe}} \) where:
 - \(C_{L1} \) is the external load capacitor at the amplifier input
 - \(C_s \) is the stray capacitance
 - \(C_{\text{probe}} \) is the probe capacitance

Therefore the drive level, \(D L \), is given by: \[
D L = \frac{\text{ESR} \times (\pi \times F \times C_{tot})^2 \times (V_{pp})^2}{2}.
\]

This DL value must not exceed the drive level specified by the crystal manufacturer.

4.4.3 Calculating external resistor \(R_{\text{Ext}} \)

The role of this resistor is to limit the drive level of the crystal. With \(C_{L2} \), it forms a low-pass filter that forces the oscillator to start at the fundamental frequency and not at overtones (prevents the oscillator from vibrating at 3, 5, 7 etc. times the fundamental frequency). If the power dissipated in the crystal is higher than the value specified by the crystal manufacturer, the external resistor \(R_{\text{Ext}} \) becomes mandatory to avoid overdriving the crystal. If the power dissipated in the selected quartz is less than the drive level specified by the crystal manufacturer, the insertion of \(R_{\text{Ext}} \) is not recommended and its value is then 0 \(\Omega \).

An initial estimation of \(R_{\text{Ext}} \) is obtained by considering the voltage divider formed by \(R_{\text{Ext}}/C_{L2} \). Thus, the value of \(R_{\text{Ext}} \) is equal to the reactance of \(C_{L2} \).

Therefore: \[
R_{\text{Ext}} = \frac{1}{2\pi F C_{L2}}.
\]

Let us put:

- oscillation frequency \(F = 8 \text{ MHz} \)
- \(C_{L2} = 15 \text{ pF} \)

Then: \[R_{\text{Ext}} = 1326 \text{ } \Omega. \]
The recommended way of optimizing R_{Ext} is to first choose C_{L1} and C_{L2} as explained earlier and to connect a potentiometer in the place of R_{Ext}. The potentiometer should be initially set to be approximately equal to the capacitive reactance of C_{L2}. It should then be adjusted as required until an acceptable output and crystal drive level are obtained.

Caution: After calculating R_{Ext} it is recommended to recalculate the gain margin (refer to Section 4.3: Gain margin of the oscillator) to make sure that the addition of R_{Ext} has no effect on the oscillation condition. That is, the value of R_{Ext} has to be added to ESR in the expression of g_{m} and $g_m >> g_{mcrit}$ must also remain true:

$$g_m >> g_{mcrit} = 4 \times (ESR + R_{Ext}) \times (2 \times \pi \times F)^2 \times (C_0 + C_L)^2$$

Note: If R_{Ext} is too low, there is no power dissipation in the crystal. If R_{Ext} is too high, there is no oscillation: the oscillation condition is not reached.

4.5 Startup time

It is the time that take the oscillations to start and become stable. This time is longer for a quartz than for a ceramic resonator. It depends on the external components: C_{L1} and C_{L2}. The startup time also depends on the crystal frequency and decreases as the frequency rises. It also depends on the type of crystal used: quartz or ceramic resonator (the startup time for a quartz is very long compared to that of a ceramic resonator). Startup problems are usually due to the gain margin (as explained previously) linked to C_{L1} and C_{L2} being too small or too large, or to ESR being too high.

The startup times of crystals for frequencies in the MHz range are within the ms range. The startup time of a 32 kHz crystal is within the 1 s to 5 s range.

4.6 Crystal pullability

Pullability refers to the change in frequency of a crystal in the area of usual parallel resonance. It is also a measure of its frequency change for a given change in load capacitance. A decrease in load capacitance causes an increase in frequency. Conversely, an increase in load capacitance causes a decrease in frequency. Pullability is given by the following formula:

$$\text{Pullability}_{(PPM/\mu F)} = \frac{C_m \times 10^6}{2 \times (C_0 + C_L)^3}$$
5 Easy guideline for the selection of suitable crystal and external components

This section gives a recommended procedure to select suitable crystal/external components. The whole procedure is divided into three main steps:

Step1: Calculate the gain margin

(please refer to Section 4.3: Gain margin of the oscillator)

- Choose a crystal and go to the references (chosen crystal + microcontroller datasheets)
- Calculate the oscillator gain margin and check if it greater than 5:
 - If Gain margin < 5, the crystal is not suitable, choose another with a lower ESR or/and a lower C_L. Redo step 1.
 - If Gain margin > 5, go to step 2.

Step2: Calculate the external load capacitors

(please refer to Section 4.2: Load capacitor CL)

Calculate C_{L1} and C_{L2} and check if they match the exact capacitor value on market or not:

- If you found the exact capacitor value then the oscillator will oscillate at the exact expected frequency. You can proceed to step 3.
- If you did not find the exact value and:
 - frequency accuracy is a key issue for you, you can use a variable capacitor to obtain the exact value. Then you can proceed to step 3.
 - frequency accuracy is not critical for you, choose the nearest value found on market and go to step 3.

Step3: Calculate the drive level and external resistor

(please refer to Section 4.4: Drive level DL and external resistor RExt calculation)

- Compute DL and check if is greater or lower than $DL_{crystal}$:
 - If $DL < DL_{crystal}$, no need for an external resistor. Congratulations you have found a suitable crystal.
 - If $DL > DL_{crystal}$, you should calculate R_{Ext} in order to have: $DL < DL_{crystal}$. You should then recalculate the gain margin taking R_{Ext} into account. If you find that gain margin > 5, congratulations, you have found a suitable crystal. If not, then this crystal will not work and you have to choose another. Return to step 1 to run the procedure for the new crystal.
6 Some recommended crystals for STM32™ microcontrollers

6.1 HSE part

6.1.1 Part numbers of recommended 8 MHz crystals

Table 3. EPSON®

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L</th>
<th>C_0</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-406 or MA-505 or MA-506 (8 MHz)</td>
<td>80 Ω</td>
<td>10 pF</td>
<td>5 pF</td>
<td>137.4</td>
<td>SMD</td>
</tr>
</tbody>
</table>

Table 4. HOSONIC ELECTRONIC

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L</th>
<th>C_0</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC-49S-8 MHz</td>
<td>80 Ω</td>
<td>10 pF</td>
<td>7 pF</td>
<td>107</td>
<td>Through-hole</td>
</tr>
</tbody>
</table>

Table 5. CTS®

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L</th>
<th>C_0</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS08A</td>
<td>60 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>56.9</td>
<td>Through-hole</td>
</tr>
<tr>
<td>ATS08ASM</td>
<td>60 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>56.9</td>
<td>SMD</td>
</tr>
</tbody>
</table>

Table 6. FOXElectronics®

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L</th>
<th>C_0</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXSLF/080-20</td>
<td>80 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>43.1</td>
<td>Through-hole</td>
</tr>
<tr>
<td>FOXSDLF/080-20</td>
<td>80 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>43.1</td>
<td>SMD</td>
</tr>
<tr>
<td>PFXLF/080-20</td>
<td>80 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>43.1</td>
<td>SMD</td>
</tr>
</tbody>
</table>
6.1.2 Part numbers of recommended ceramic resonators

Table 7 gives the references of recommended CERALOCK® ceramic resonators for the STM32 microcontrollers provided and certified by Murata.

Table 7. Recommendable conditions (for consumer)

<table>
<thead>
<tr>
<th>Part number</th>
<th>Frequency (MHz)</th>
<th>C_L (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTCR4M00G55-R0</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>CSTCE8M00G55-R0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CSTCE8M00G15L**-R0</td>
<td>8 to 13.99</td>
<td>33</td>
</tr>
<tr>
<td>CSTCE12M0G55-R0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CSTCE16M0V13L**-R0</td>
<td>14 to 20</td>
<td>15</td>
</tr>
<tr>
<td>CSTCE16M0V53-R0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>CSTCW24M0X51R-R0</td>
<td>24</td>
<td>6</td>
</tr>
</tbody>
</table>

For other Murata resonators recommended for STM32 microcontrollers, please refer to the following link:

Then type “STM8” in the “IC part number” and click on “submit query”.

6.1.3 Part numbers of recommended 25 MHz crystals (Ethernet applications)

Table 8. HOSONIC ELECTRONIC

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L (pF)</th>
<th>C_0 (pF)</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>6FA25000F10M11</td>
<td>40Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>Through-hole</td>
</tr>
<tr>
<td>SA25000F10M11</td>
<td>40Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>SMD</td>
</tr>
</tbody>
</table>

Table 9. FOXElectronics®

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L (pF)</th>
<th>C_0 (pF)</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXSLF/250F-20</td>
<td>30Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>Through-hole</td>
</tr>
<tr>
<td>FOXSDLF/250F-20</td>
<td>30Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>SMD</td>
</tr>
<tr>
<td>PFXL250F-20</td>
<td>30Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>SMD</td>
</tr>
</tbody>
</table>

Table 10. CTS®

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L (pF)</th>
<th>C_0 (pF)</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS25A</td>
<td>30Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>Through-hole</td>
</tr>
<tr>
<td>ATS25ASM</td>
<td>30Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>11.58</td>
<td>SMD</td>
</tr>
</tbody>
</table>
6.1.4 Part numbers of recommended 14.7456 MHz crystals (audio applications)

Table 11. FOXElectronics®

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L</th>
<th>C_0</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXSLF/147-20</td>
<td>40 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>24.97</td>
<td>Through-hole</td>
</tr>
<tr>
<td>FOXSDLF/147-20</td>
<td>40 Ω</td>
<td>20 pF</td>
<td>7 pF</td>
<td>24.97</td>
<td>SMD</td>
</tr>
</tbody>
</table>

Table 12. ABRACON™

<table>
<thead>
<tr>
<th>Part number</th>
<th>ESR</th>
<th>C_L</th>
<th>C_0</th>
<th>Gain margin</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMM2-14.7456 MHz</td>
<td>50 Ω</td>
<td>18 pF</td>
<td>7 pF</td>
<td>29.3</td>
<td>SMD</td>
</tr>
</tbody>
</table>
6.2 LSE part

For the low-speed external oscillator (LSE) part of STM32 microcontrollers, it is recommended to use a crystal with $C_L \leq 7 \text{ pF}$.

Table 13. Recommendable crystals

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Quartz reference/part number</th>
<th>C_L (pF)</th>
<th>ESR (Ohm)</th>
<th>Frequency (Hz)</th>
<th>C_0 (pF)</th>
<th>Gm margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abracon</td>
<td>ABS07</td>
<td>7</td>
<td>70000</td>
<td>32768</td>
<td>1.05</td>
<td>6.5</td>
</tr>
<tr>
<td>Abracon</td>
<td>AB206J</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>1.35</td>
<td>10.9</td>
</tr>
<tr>
<td>Abracon</td>
<td>ABS25</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>1.35</td>
<td>10.9</td>
</tr>
<tr>
<td>Abracon</td>
<td>AB26TRB</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>1.35</td>
<td>10.9</td>
</tr>
<tr>
<td>Abracon</td>
<td>AB26TRJ</td>
<td>6</td>
<td>40000</td>
<td>32768</td>
<td>1.1</td>
<td>14.6</td>
</tr>
<tr>
<td>ACT</td>
<td>ACT4115A SMX</td>
<td>7</td>
<td>70000</td>
<td>32768</td>
<td>1.1</td>
<td>6.4</td>
</tr>
<tr>
<td>ACT</td>
<td>ACT3215A SMX</td>
<td>7</td>
<td>70000</td>
<td>32768</td>
<td>0.95</td>
<td>6.7</td>
</tr>
<tr>
<td>ACT</td>
<td>ACT711S</td>
<td>7</td>
<td>65000</td>
<td>32768</td>
<td>0.8</td>
<td>7.5</td>
</tr>
<tr>
<td>ACT</td>
<td>ACT201</td>
<td>7</td>
<td>50000</td>
<td>32768</td>
<td>1</td>
<td>9.2</td>
</tr>
<tr>
<td>ACT</td>
<td>ACT201</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>1</td>
<td>12.0</td>
</tr>
<tr>
<td>ACT</td>
<td>ACT200A</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>0.9</td>
<td>12.4</td>
</tr>
<tr>
<td>EPSON</td>
<td>FC135/145</td>
<td>7</td>
<td>70000</td>
<td>32768</td>
<td>1</td>
<td>6.6</td>
</tr>
<tr>
<td>EPSON</td>
<td>MC146/156</td>
<td>7</td>
<td>65000</td>
<td>32768</td>
<td>0.8</td>
<td>7.5</td>
</tr>
<tr>
<td>EPSON</td>
<td>C-002RX</td>
<td>6</td>
<td>60000</td>
<td>32768</td>
<td>0.85</td>
<td>10.5</td>
</tr>
<tr>
<td>EPSON</td>
<td>MC306/405/406</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>0.9</td>
<td>12.4</td>
</tr>
<tr>
<td>EPSON</td>
<td>MC30A</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>0.9</td>
<td>12.4</td>
</tr>
<tr>
<td>EPSON</td>
<td>C-004R</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>0.85</td>
<td>12.6</td>
</tr>
<tr>
<td>EPSON</td>
<td>C-005R</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>0.75</td>
<td>12.9</td>
</tr>
<tr>
<td>EPSON</td>
<td>C-001R</td>
<td>6</td>
<td>35000</td>
<td>32768</td>
<td>0.9</td>
<td>17.7</td>
</tr>
<tr>
<td>JFVNY</td>
<td>DT-38G06</td>
<td>6</td>
<td>30000</td>
<td>32768</td>
<td>1.3</td>
<td>18.44</td>
</tr>
<tr>
<td>JFVNY</td>
<td>MC306G06</td>
<td>6</td>
<td>50000</td>
<td>32768</td>
<td>2</td>
<td>9.3</td>
</tr>
<tr>
<td>KYOCERA</td>
<td>ST3215SB32768C0HPWBB</td>
<td>7</td>
<td>70000</td>
<td>32768</td>
<td>0.9</td>
<td>6.7</td>
</tr>
<tr>
<td>MicroCrystal</td>
<td>MS1V-T1K</td>
<td>6</td>
<td>60000</td>
<td>32768</td>
<td>0.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>
7 Some recommended crystals for STM8A/S microcontrollers

7.1 Part numbers of recommended crystal oscillators

Table 14. KYOCERA

<table>
<thead>
<tr>
<th>Part number</th>
<th>Freq.</th>
<th>ESR</th>
<th>CL</th>
<th>Drive level (DL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX5032GA0800H0QSWZZ</td>
<td>8 MHz</td>
<td>300 Ω max</td>
<td>12 pF</td>
<td>500 µW max</td>
</tr>
<tr>
<td>CX5032GA1600H0QSWZZ</td>
<td>16 MHz</td>
<td>100 Ω max</td>
<td>12 pF</td>
<td>300 µW max</td>
</tr>
<tr>
<td>CX8045GA0800H0QSWZZ</td>
<td>8 MHz</td>
<td>200 Ω max</td>
<td>12 pF</td>
<td>500 µW max</td>
</tr>
<tr>
<td>CX8045GA1600H0QSWZZ</td>
<td>16 MHz</td>
<td>50 Ω max</td>
<td>12 pF</td>
<td>300 µW max</td>
</tr>
</tbody>
</table>

7.2 Part numbers of recommended ceramic resonators

Table 15 and Table 16 give the references of recommended CERALOCK® ceramic resonators for the STM8A microcontrollers provided and certified by Murata.

Table 15. Recommendable conditions (for consumer)

<table>
<thead>
<tr>
<th>Part number</th>
<th>Freq.</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTCR4M00G55B-R0</td>
<td>4 MHz</td>
<td>$C_{L1} = C_{L2} = 39 \text{ pF}$</td>
</tr>
<tr>
<td>CSTCE8M00G55A-R0</td>
<td>8 MHz</td>
<td>$C_{L1} = C_{L2} = 33 \text{ pF}$</td>
</tr>
<tr>
<td>CSTCE16M0V53-R0</td>
<td>16 MHz</td>
<td>$C_{L1} = C_{L2} = 15 \text{ pF}$</td>
</tr>
</tbody>
</table>

Table 16. Recommendable conditions (for CAN-BUS)

<table>
<thead>
<tr>
<th>Part number</th>
<th>Freq.</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTCR4M00G15C**-R0</td>
<td>4 MHz</td>
<td>$C_{L1} = C_{L2} = 39 \text{ pF}$</td>
</tr>
<tr>
<td>CSTCR8M00G15C**-R0</td>
<td>8 MHz</td>
<td>$C_{L1} = C_{L2} = 33 \text{ pF}$</td>
</tr>
<tr>
<td>CSTCE16M0V13C**-R0</td>
<td>16 MHz</td>
<td>$C_{L1} = C_{L2} = 15 \text{ pF}$</td>
</tr>
</tbody>
</table>
8 Some PCB hints

1. High values of stray capacitance and inductances must be avoided as much as possible as they might give rise to an undesired mode of oscillation and lead to startup problems.
 In addition, high-frequency signals should be avoided near the oscillator circuitry.
2. Reduce trace lengths as much as possible.
3. Use ground planes to isolate signals and reduce noise. For instance, the use of a local ground plane on the PCB layer immediately below the crystal guard ring is a good solution to isolate the crystal from undesired coupling with signals on other PCB layers (crosstalk). Note that the ground plane is needed in the vicinity of the crystal only and not on the entire board (see Figure 7).
4. The VSS paths can also be routed as shown in Figure 7. In this way, the VSS paths isolate the oscillator input from the output and the oscillator from adjacent circuitry. The unterminated VSS paths that end under C\textsubscript{L1} and C\textsubscript{L2} are not in contact with the ground shield under the quartz. All VSS vias in Figure 7 are connected to the local ground plane (except for the quartz pads).
5. Use decoupling capacitors between each V\textsubscript{DD} path and the closest V\textsubscript{SS} path to reduce noise.

Figure 7. Recommended layout for an oscillator circuit

Warning: It is highly recommended to apply conformal coatings to the PCB area shown in Figure 7, especially for the LSE quartz, CL1, CL2, and paths to the OSC\textsubscript{IN} and OSC\textsubscript{OUT} pads as a protection against moisture, dust, humidity, and temperature extremes that may lead to startup problems.

Note: \(R_{\text{Ext}} \) is mandatory only if the dissipated power in the crystal exceeds the drive level specified by the crystal manufacturer. Otherwise, its value is 0 \(\Omega \) (refer to Section 4.4: Drive level DL and external resistor \(R_{\text{Ext}} \) calculation for more details).
9 Conclusion

The most important parameter is the gain margin of the oscillator, which determines if the oscillator will start up or not. This parameter has to be calculated at the beginning of the design phase to choose the suitable crystal for the application. The second parameter is the value of the external load capacitors that have to be selected in accordance with the C_L specification of the crystal (provided by the crystal manufacturer). This determines the frequency accuracy of the crystal. The third parameter is the value of the external resistor that is used to limit the drive level. In the 32 kHz oscillator part, however, it is not recommended to use an external resistor.

Because of the number of variables involved, in the experimentation phase you should use components that have exactly the same properties as those that will be used in production. Likewise, you should work with the same oscillator layout and in the same environment to avoid unexpected behavior and therefore save time.
10 Revision history

Table 17. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Jan-2009</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>27-Apr-2010</td>
<td>3</td>
<td>Added Section 7: Some recommended crystals for STM8A/S microcontrollers.</td>
</tr>
<tr>
<td>25-Nov-2010</td>
<td>4</td>
<td>Updated Section 6.1.2: Part numbers of recommended ceramic resonators: removed Table 7: Recommendable condition (for consumer) and Table 8: Recommendable condition (for CAN bus); added Table 7: Recommendable conditions (for consumer); updated murata resonator link. Updated Section 6.2: LSE part: removed Table 13: EPSON TOYOCOM, Table 14: JFVNY®, and Table 15: KDS; Added Table 13: Recommendable crystals. Added Warning: after Figure 7.</td>
</tr>
<tr>
<td>30-Mar-2011</td>
<td>5</td>
<td>Section 6.1.2: Part numbers of recommended ceramic resonators: updated “STM32” with “STM8”. Table 15: Recommendable conditions (for consumer); replaced ceramic resonator part number “CSTSE16M0G55A-R0” by “CSTCE16M0V53-R0”.</td>
</tr>
</tbody>
</table>