A Beginner's Guide to Gambas

PROGRAMMING

AW :l-lefinner's Guide

John W Rittinghouse

Cover design by Fabien Bodard
Foreword by Fabien Bodard and Benoit Minisini

1

A Beginner's Guide to Gambas

Copyright Notice for the printed version of this work:

A Bedginner's Guide to Gambas (this work) is copyright © 2005 by John ‘W.
Rittinghouse, all rights are reserved. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers-or
lists, or to reuse any copyrighted component of this work in other works -must be
obtained from the the author, John W. Rittinghouse. The author grants a perpetual
license to the Gambas user-community for use of the electronic version of this printed
work under the terms and conditions of the OpenContent License printed on the

following page.

A Beginner's Guide to Gambas

Copyright Notice for the electronic (online) version of this work, based on the OpenContent License
(OPL), Version 1.0, July 14, 1998.

This document outlines the principles underlying the OpenContent (0C) movement and may be redistributed provided it-remains
unaltered. For legal purposes, this document is the license under which OpenContent is made available for use. The-original

version of this document may be found at http://opencontent.org/opl.shtml .

LICENSE
Terms and Conditions for Copying, Distributing, and Modifying

Items other than copying, distributing, and modifying the Content with which this license was distributed (such as using, etc.)
are outside the scope of this license.

1. You may copy and distribute exact replicas of the OpenContent (OC) as you receive it, in any medium, provided that-you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty;: keep intact
all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the QC a-copy of
this License along with the OC. You may at your option charge a fee for the media and/or handling involved in creating:a unique
copy of the OC for use offline, you may at your option offer instructional support for the OC in exchange for a fee, or-yourmay at
your option offer warranty in exchange for a fee. You may not charge a fee for the OC itself. You may not charge-a fee for the
sole service of providing access to and/or use of the OC via a network (e.g. the Internet), whether it be via the world wide web,
FTP, or any other method.

2. You may modify your copy or copies of the OpenContent or any portion of it, thus forming works based on the-Content, and
distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified content to carry prominent notices stating that you changed it, the exact nature and content of
the changes, and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the OC ot any
part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License, unless otherwise
permitted under applicable Fair Use law.

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from-the-0C,-and
can be reasonably considered independent and separate works in themselves, then this License, and its terms, do hot apply to
those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole-which is
a work based on the OC, the distribution of the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it. Exceptions are made to this requirement
to release modified works free of charge under this license only in compliance with Fair Use law where applicable.

3. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission: to
copy, distribute or modify the OC. These actions are prohibited by law if you do not accept this License. Therefore, by
distributing or translating the OC, or by deriving works herefrom, you indicate your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or translating the OC.

NO WARRANTY

4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR-THE.OC;.TO
THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE OC "AS IS" WITHOUT WARRANTY OF~ANY. KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK OF USE OF THE OC IS*WITH
YOU. SHOULD THE OC PROVE FAULTY, INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME THE COSTOF
ALL NECESSARY REPAIR OR CORRECTION.

5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MAY MIRROR AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE OC, EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

A Beginner's Guide to Gambas

Table of Contents

Acknowledgments.........cemmmmmmmmmmeeeeee e 16
D 17
Chapter 1 - Introducing Gambas.........ccccccmrrrriiiniiiisemmmnnnninnnnnns 19
Gambas Architecture..........ccccoriiriiiiimimmmrnrecccee e e 19
The Gambas Programming Environment............5..5. 22
Gambas IDE Components.oocuueeeeiiiiieee et 25
Chapter 2 — Gambas Language Concepts........cccccemmmmemmeeennnnnnnes 30
Gambas Variables, Data-types and Constants....5...=..c 30
Variable ASSIgNMeNt..........oooiiiiiiiiiii e 35
Assignment Using The WITH Statement.................c...o... 35
Operators and EXPresSSions........ccccvuiunnmmsssssescvwamizesi 36
Comparison OPEratorsccccccuuveiiiiiieieeeeeeee e e e i 36
Arithmetic Operators. 36
Let's Start Coding Gambas..........ccooviiiiiiiiiiineee i 37
END, RETURN and QUIT Statements.......ccccccoevvvvvneeeeeniitnninnnn 37
String OPerators........ooov oo 44
Chapter 3 - Keywords and Program Flow Controil.................... 46
The PRINT Statement...........ooooveeiiiiiiiicciiee v 46
The IF Statement.........ooooioiiiiii e 47
The SELECT / CASE Statement...........coooovvvviieenncn s 48
GOTO and LABELS........oooiiiiieiee e e i 49
The FOR / NEXT Statement............ccoooeeiiiiiieeii i, 49
DO [WHILE] LOORP.... et e 51
WHILE [Expression] WEND LOOPSccoovvvevevieiieeeizienennat 52
The REPEAT UNTIL I0OP «.vvvviieiiiieeeeeiiiiiiiiiieeeeeeeee et 53
Defining and Using Arrays in Gambas................c..5ini 53
00| 1= o3 oY 13 == S 55
The FOR EACH Statement..........cccooveeieeiiiiiiiiciieee e i 55
Chapter 4 — Introducing the Gambas ToolBoxX.......cccccceeeeennennns 57
The Button Control............iiinn s sssnesaseeees 61
Common Control Properties. ... 62
Button Methods.........oooiiiiiii 70

A Beginner's Guide to Gambas

BUutton EVeNtS.........uveiieiiciie 78
The Picture Class........ccccevriiimmmnnnnnnnnniss s szssslendad 78
Chapter 5 — Controls for Gathering Input...........cccovemmrniiiininees 80
TextLabel.......... s s s pnnak 82
L= 4 £ =) P~ S 4 - 83
COMDOBOX......cesieeeenernrnseessssessssssssssssssessssssssssssesssssisensrs @D
=31 = o A = 89
- 110 = = 92
JLICo T [o 1= = 1114 Co o TP . 93
L0 3= 4 oY o)G A= J 93
Panel........ooo e G e 95
(3= To [0 =111 4 (o T 95
Chapter 6 — Menus, Modules, Dialogs and Message Boxes.....97
The Gambas Menu Editor..........ccuureecucunereeescsneneeisiniort 198
Building Menus.........coummmiiimmmmmmmnsssnssss s din s 101
Dialogs...ciirrrrrririrrrsrrsnsss s —————_————_——— 103
Modules........ccovemmmmiriiinieerr e e 105
MessageBoXes......ccccrrmmmmrmmmnnmnsns s S i 112
Information Messages..........cccccvmviiiiiiiiiiiieeee e 112
Query/Confirm MeSSages......c.vuveeeiriuieeieeeeeieieeee e 114
Error MeSsSages.uuuieiimmiiieieeeeeeeeeeeee e s 115
Warning or Alert Messages......ccooovvvveeiiiiiiiiiiiiiieciee . 115
Delete MeSSages.uuuuiieeiiiiiiiiiiiieeeee e e 116
Dialog Class File-related Functions..........cccccoueeeaiZin .. 117
Dialog OpenFile FUNCON..........ccuviiiiiiiiiieec i 117
Dialog SaveFile FUNCion..........ccccoiiiiiiiiiie e B 118
Dialog SelectDirectory Function.............ccceveiininen i, 119
Complete Example Listing......cccccceeviiiiiiemmnnnnnnnnninn . 120
Module1l.module listing.......cccocinrninnnnnnnnnnnnasn 123
Chapter 7 — Handling Strings and Converting Data-types.....125
String Functions.........ccociiiiiinneeeeee s 125
=T o DR 126

A Beginner's Guide to Gambas

Upper$/Ucase$/Ucase and Lower$/Lcase$/Lcase 126
Trim$, LTrim$, and RTrimP...cooveeeeeeeeeeeeeeeeeeeeeeeeeee i 127
Left$, Mid$, and Right$ooooeviiiiiiieiie i, 128
SPACED. ... ettt 130
REPIACES ... s 130
SHNGS e s 131
SUDSES ... 131
NSt e 132
RINSHT e e 134
Pt et a e e s 134
Converting Data-types.....ccccccrriinnnnniirnneemssssnn i it 135
ASC AN CHOIS oot 135
BN .. 136
(07 = o To] ISR = S e 137
(027 (TSSO RURPRR 138
(O] B F= 1 (TR RRUOORRR = = 138
CFloal.... e 139
Cint / Cinteger and CShortccccvevviiiiiieiiiieee et 140
CStr / CSHNG e i 140
HEXS. .. 141
(070 01V SRR 141
Val aNd SHS oo 142
) [OO POPPPPPp A 142
FOrmMatS. ..coeneeee et 145
Datatype managementooeeeeemmmeeeniiiinnnnnnnnnnea g i 147
TYPEO ... 148
Chapter 8 — Using Advanced Controls..............cccceiiiiimirnnnnnnnnns 149
IconView Control............ oo e e e e anne o 149
ListView Control...........coooiiiieeeiieecscccccccmmseccceeeeene e 158
Using the Gambas Icon Edit Tool........cccccueriirnnn imnn i 162
The TreeView Control............eeee e i 163
The GridView Control.........eeeeeeeirrecceerrece it 171
The ColumnView Control............ccccceeiiiiiiiiiiineeeeeecceandiie 175
Layout Controls — HBox, VBox, HPanel and Vpanel..177
HBOX and VBOX.......oouuuiiiiiiieiiccee e, 177
HPanel and Vpanel...........coooo 177

A Beginner's Guide to Gambas

The TabStrip Control.......cooiieeiiiicciceeeeeeeee e 182
Chapter 9 — Working with Files.........ccooiiiiiiiiiiiieeeeeereee 188
ACCESS. ..cumreurensererreseessessesrssssessesssessesssessesssesnned L. 7488
DFeureueeseessessessessesse e ssesse sttt st e 189
EOF.cvvvemmeseeesemssseseessessssssssessessessssesssessessessessesseseesioon 0 190
EXIStucueeeereraeereressssssesesessssssessssssssssessssssssessssssesssassesenners 190
LES3 11 T o O = 191
£33 - 1 O = 191
Temp / TEMPS ..o :....‘-._-..192
OPEN and CLOSE........ccuumeeeesensssssssssesssssssssann .2, 192
LINE INPUT..c.cooureersereessesneessssssssssssssssssssssssssssssssasocensis 193
READ, SEEK, WRITE and FLUSH..........cccocccoumeeesiioninee 194
COPY, KILL and RENAME............ccurmecerssssrscesssnss e i 195
MKDIR, RMDIR.........coveeeeeesesreeessseesessssresessssenseesens e 196
Chapter 10 — Math Operations...'.215
Precedence of Operations.....................................,-....-'..:.2:1:5
ADS..cooeveeveeeeeessssssssssssmsssieniif 21 6
Acs/ ACosZ16
N o X | O = ey I
L = T 1 b
ASNN / ASINN..cevrreernreeeenssneseesssesesssssessessssssssssannss f.218
AN [ATAN.cecerrrsesssssnnesssssssssssssssssssssssssssssssssssssaseins: 218
AIND / ATaNN. ..o saesssaes et 219
0o XY= 219
(00 = o T = 5.220
Deg and Rad.........ccceoevmererrerrnsseesnessessessnssssesasssennst 221
310 YT o221
Fix @and Frac.......cccceummiiiiiiiinnniniinissssssssesesnseeesenennes 7.222
INberreeeeeeesesseesssssessesessssssssessssessssess s sssessssessssenssnssens -.223
o o . 223
[0 T o 224

A Beginner's Guide to Gambas

1Y F="0 Q= 1 Lo I (] 1 o T 224
= PRSI 5 | 225
Randomize and RNd........ommeemmiieeeceeeceeee e emeee b 225
ROUNd.....cciiiiiieiireieresenrassnrassasassasansassnsassnsassnsnssnsnnbiunsiin 227
T o Y = - 227
] . S 228
S Y1 21 o T o A= 0 229
£ o | Y =~ 229
1 1= o R S o 230
1= 2] o T = P gl 231
Derived Math FUNCLIONS....ccoeuimeeeee e e e e L 231
Chapter 11 — Object-Oriented Concepts..........cccerrrrrmmmmmmnncnnnnns 237
Fundamentals of Object Oriented Programming:...s. 238
(@] o] 1=To1 £ T PPURRPUPRRR = S 239
Data AbStraction.......ooeeeeee e e 239
Encapsulation...........cccoo 240
Polymorphism...........ueei i 240
[a] o L2101 7= Vg (o] = R 240
The Gambas Approach to OOP.........cccciiiiiiecenssnniin 241
GaAMDAS ClaSSES. .. ccuuiieiieeeeeeeee et e e anes 241
Sample program: Contacts........cccurmmrmrmsssssssssssnsssimneniny 242
The Contact ClasSS......ocvuueiieeeeeee e b e 242
Contact.GetData Method.........c.coeeeeeieiee e 243
Contact.PutData Method...........cooeveivieiiiieiieieeeeeeiie s 246
Forma1.class fille. ..o 247
FOrm1 CoNStrUCTONoeeeeeeeeeee e e e 248
Form_Open Subroutine...........ccccoveeiiiiiiiiiiiee i 250
Adding Controls to Form1.Form..........ccoeeveiiiiieiiiieiei. 250
The TOOIBUHONS. ... 251
The QUIt BUON. c.eeeeeeeeee et e 251
Adding the Labels and TextBOXeS.........cccceeiiiiiieiiiiiiiiieeeeciae 252
UpdateForm() Subroutine..........ccceeveeeeiiiiiiiieeei 253
Coding Toolbuttons: First, Prev, Next, and Last....................... 254
Coding ToolButtons: Adding a record...........ccccccevuveeeeeeeeeeccnnnns 256
Coding ToolButtons: Clearing data.........ccccccoeeeviiieeeeeeeeicinnes 258
Validating User Input..........cooeeiiiiiiiiii e 258

8

A Beginner's Guide to Gambas

Adding a Search Feature..........ooooiiiiiiiiiiiiieeeeee 260
The DoFind Subrouting...........oooceiiiiieiei i 262
ToolButtons again: Updating a Record....................cenie. 263
Toolbuttons again: Deleting a Record...........cccccceeeeeiioin. 264
ToolButtons again: Saving Data..............ceeeveeeeenn . 265
Creating a Stand-alone Executable......................5.. 5. 266
Chapter 12 — Learning to Draw..........cccovvnnivmnnsmnnsssssssssssssssssssnas 267
Draw Properties.........ouuuiiiininninnrnnsnssssssnseseseess s s 267
BackColor/Background and ForeColor/Foreground......:. 267
(@] 1o TP UPPPPPURRR oo 268
FillColor,FillStyle, FillX,FillYcooveeeeeeeee i 268
FONt. e 269
YT o N = 269
LineStyle/LineWidth...........ccooovueieiiiiiiiieeeeeee e 270
TransSparent........ccoooiiiiiiiee e el 270
Draw Methods.......ccceuiiiiiiimmmeeiinirnnnne s e nemns 270
Text/TextHeight/TextWidth............cccoiiiiii 272
Draw Primitives: Point/Rect/Ellipse/Line...................0..5.. 274
Draw Primitives: Polygon and Polyline........................c. 280
IMage/PiCture/Tile..... ... 284
Drawing with a Drawing object...........ccovvvviiiiiini i, 292
Chapter 13 — Error Management............ccocciivennnnmmmmmmmnnnnnnnneeenns 298
General Concepts of Error Management.............5...k. 298
Error Handling.....cooooooiiiiiiieeeeeeeeeeeeeeeeeee 298
Boundary-Related Errors.........coovvevveviiiiiiiiiiiiiiiiia it 299
Calculation Errors.......cccce e 299
Initial and Later States.........coccccveeiieiiei e, 300
Control FIOW ErrOrs.......ccoovvvviiiiiieeeeee e 300
Errors in Handling or Interpreting Data....................iieniins 301
Race and Load Conditions............ccccuueiiiiiiieeiieeeeeec i, 301
Platform and Hardware ISSues.........ccccccvvvervvvrveeenniiinniiae 302
Source, Version, and ID Control Errors..........coovvevevniiiis 303
TeStiNg ErrOrS.. ... e 303
Test Plan ReVIEWS........ccoooiiiiiiii it 303
Gambas Error management.........ccccovvvvninnnnnsnssnncnnsannnns 304
TRY statement... IF ERROR..........cccooiiiiiiiie e, 304

A Beginner's Guide to Gambas

Catch and Finally Statements..........cccooiiiiiiiiines 306
Gambas Event management........ccccueeeeeniiiiiinnnnen et 309
Chapter 14 — Mouse, Keyboard and Bit Operations................ 312
Mouse Operations.........cccueieiiiiniiiiinisssssssnnssnene s ilrennnes 312
Keyboard Operations.........ccccceeermmmmmmnnnnnnsnnsssssssssn dahe i 316
Bit Operations........ccccmiiiiiiiiiiiie e St 318
Chapter 15 — Gambas and Databases............ccccrmmmmmmnnsiiiinnnnns 326
Connection Class.......cccccciiirnnnnmmrrrrrrmnnennnmnesssssssss e e ioes 327
Connection Properties.......cccuuveviiiiiiiiiieieeeiieeeee b 328
(@] 0 F= 11 U EEURPRPPR= s 328
DatabaSES. ... e e 328
0 L S 329
oo] PO PR P PRSPPI 329
N F= T 1= 329
= LTS (o S S 330
0 o PPN == S A 330
1= 1 0] TPt S 330
1Y o1 TSP PPPPPPE St 330
(7= = PR = ey 330
V4= 1T o T 8 330
The Concept of a Transaction...........coccuveeveeeiiiiininiisiniin. 331
Connection Class Methods..........ccovvvveviiviiiiiiiieieeeeeciree e, 332
OPEN/CIOSE....cceiiiiee ettt 332
Begin/Commit/RoIIDaCK...........uviiiiiiiiiiiiie i e 333
T o USSR SRR 333
(O (=T U EEUEPRPPR = 334
o U PRSRS Sa 334
= o 3 s 334
T] (= O i o 335
Result ObJeCES. ... 335
D] = 20 F- T 336
Database......cccccmmmmeeiiiiirinrnnnmn s e n i 337
Field.... e 337
g T 1= G = 1 337
LI 1 = 337
0 L] 338

10

A Beginner's Guide to Gambas

The Database Example Program............coemmemmmeeemennnneee 338
Chapter 16 — Global Gambas...........ccccceeiiiiiiiiiininninns e 351
INterNAtioNAlIZAtION.eeeeeereereeeeeeeeeeeeeeseeeeesesseeeeene e if- 351
LOCAlIZAtION.cuerecrerssssssssssssss s ssssssssssssssssssisti e e 391
Universal Character Set (UCS)...........ccccoinmmmmmnnnnaa i i 352
L8 0] o o o - s SO 352
I s A = 353
How to translate in Gambas.......ccccceeeciiiiiirieeeccen s 355

11

A Beginner's Guide to Gambas

Table of Figures

Figure 1- General overview of Gambas architecture............cccoveveeeneniin i 20
Figure 2- the Gambas Opening SCreeN.........coooiaiiiiiiiiiiiiiie it 21
Figure 3- The Gambas Project Creation Wizard............cccuuvuueivmmmiiminiiiniinn i 22
Figure 4- A dialog to select the type of Gambas project you wish to create....... 23
Figure 5- Project Name Selection Dialog..........cueeeiiieeeieeeeiiiiiiiiiiiieeieiime e 24
Figure 6- Project Directory Selection Dialog...........cooouuiiieiiiiiiiiiiiiiieeeea e 24
Figure 7- New Project confirmation dialog........ccceevvviiiiiiiiiiiiiiiiiiiiiiee i 25
Figure 8- The Gambas IDE............o e 26
Figure 9- Project Explorer File Menu..........ooooooioiiiii 27
Figure 10- ProjeCt MEeNU.........oooi it 27
Figure 11- Project Explorer View Menu...........oooooiioiiiii e, 27
Figure 12- Project Explorer TOOIS MeNU..........oooiiiiiiiiiiiiiieieieeee i 27
Figure 13- Project Explorer Menu and Toolbar..............uuuuiiiiineiniieeeeviiiciin i 28
Figure 14- A Division by Zero Error Dialog.......cccueeeeeeeiiiiiiiiieieeeee i 40
Figure 15- The Gambas TOOIBOX.........c.uuuiiiiiieeeiieiiiiiiiiiieeeeeeee e e e e e e e e e e i s 58
Figure 16- Additional controls for QTc.eeiii i el L 60
Figure 17- First Button COde reSUIS........uuuueemiiiiie i 65
Figure 18- Demonstrating font capabilities...........ccoiiiiiii i 67
Figure 19- The dotted line indicates focus for a control..............ouueiiric i 72
Figure 20- The layout for SecondProject Formi.form............cccooiiiiii il 72
Figure 21-A partially constructed form with our first four controls................0... 73
Figure 22- EVENT MENU......ueiiiiii e b i 74
Figure 23- Adding the FUNBIN 10 OUr fOrmL..........uuiiii i 76
Figure 24-What our form looks like when a mouse is detected over the form.

Note the text is blanked OUL. ... 77
Figure 25- The progress bar when the FunBtn is clicked three times............c.... 77
Figure 26- ThirdProject (almost) final result.............oooooiiiiiiii e e 80
Figure 27- Using HTML to format TextLabel output.............coooiiiiii it 82
Figure 28- Modified TextLabel output using HTML formatting................c.ceviee. 83
Figure 29- Adding a ToolTip to inform the user how to show/hide a control.. ... 85
Figure 30- Our COMBDOBOX... ... b s 86
Figure 31- The Edit list property €ditor.........coooaiiiiiiiiiiieeeeeee s 87
Figure 32- Formatting a TextLabel with HTML...........coooriiiiiiiiiici i, 88
Figure 33- Plus and minus buttons to alter the ComboBox list...........cccccceeeiiiins 88
Figure 34- What our ListBox Will 100K lK€.......ccooeiieiiiieieieeee 90
Figure 35- ListBox Edit list property editor...........coooiiiiiiiiiieeeee e 90
Figure 36- What the example frame we build will look like.............ccccciiiiiiinnnins 92

12

A Beginner's Guide to Gambas

Figure 37- A Panel with RadioButtons............ooiiee 95
Figure 38- Menu Project Final reSults............cooviiiiiiii i 97
Figure 39- The Gambas Menu Editor when it first starts...............ccooooi i 98
Figure 40- Edit fields for the Menu Editor............oooviiiiiiiiii i 99
Figure 41- Building our projeCt MenU.........coooiiiiiiiiieeeeeeeeee el 101
Figure 42- A formatted text label displaying the color value......................i.. . 104
Figure 43- Selecting colors and fONtS...........uuueeeiiiii e e 111
Figure 44- Making a new default font for the TextLabel1 control..............c..5. 112
Figure 45- An Information MessageBOX.........cccuiiiiiiiiiiieiiiiieec ek 113
Figure 46- A checked MenU itEM.........cocooiiiiiiiie e 113
Figure 47- A Question MesSageBOoX.........ooviiiiiiiiiiiii e 115
Figure 48- An Error MEeSSage.......cceeeieiieie et sae e 115
Figure 49- A Warning MeSSAQE.couiaiuuuiiiiiieee e ettt ee e e e e e e e i 116
Figure 50- Delete message with three buttons............ccccveeiiiiiiiiii e 117
Figure 51- The Open File Dialog.......cccuvueiiiiiiiiiiieee e 118
Figure 52- Save File Dialog.......c.uueiiiieiiiiie et e e 119
Figure 53- The Select Directory Dialog...........eueeeeiiieiiiiiiiiiii fa i 119
Figure 54- Choosing the Explorer example........ccccooviiiiiiiiiiiiiiiiieeeeeeeeee e 149
Figure 55- Layout for our ListView example.........cccoviiiiiiiiiiii e 159
Figure 56- Creating a new lcon image in Gambas............ccovveeeeeiniiineene i, 163
Figure 57- Our sSqQUare iCON IMAQE.......ccuuureeiieee e et ee e e e e e e e e 163
Figure 58- Icon EdItor TOOIBOX ...ccvviiiiiiiiiiiiieiee e e e e 163
Figure 59- Our Circle iCON iIMAJE.cuuiiiiiiiiiie e 163
Figure 60- The TreeView ProjeCt WINAOW.ccooiiiiiiiiiiiiiieieinreeeeeee i 164
Figure 61- What our GridView will 00K lIKe..........cccuuuuiiiiiiiiiiiiiii il 172
Figure 62- Our ColumnView eXample........cccueieiiiiiiiiiiiiee e e 175
Figure 63- Layout projeCt iICONS.......oii it e 178
Figure 64- Form1 design mode showing layout of our controls.................cee.oee. 179
Figure 65- Layout program when it starts Up.........cccvveeeiiiiiiiiiiiieeeeee e 182
Figure 66- A TabStrip CONrol.........cc.eveiiiiiie e i 183
Figure 67- Tab Project Form1.form Design..........coooiiiiiiiiiiiiiiii i 183
Figure 68- Tab0 1aYOUL........ciueeieeeeiiee e a e e e e e e pan e 184
Figure 69- Tab1 1aYOUL......ccoouiiiiie e e 184
Figure 70- Tab2 ToolButton layout with iCONS...........ccuvemimiiiieiis 185
Figure 71- Tab3 layout with @ COMDOBOX..........ooccviiiiiiiiiiiieeee e 186
Figure 72- The FileOps program at runtime...........cccoveeiiiiiiiieeeiiiieeee i 196
Figure 73- Form2.form design mMode............uviiiiiiiiiiiiiiieieeeeeeee e 210
Figure 74- Finished Contacts program...........ccceeeeeiiiieeeeincieeeee e esieeee e e e 248
Figure 75- Form1 seen in design mode..........c..eeeviiiiiiiiiiieiieeeieeeeee e 253

13

A Beginner's Guide to Gambas

Figure 76- Contacts Manager running standalone on my desktop.................... 266
Figure 77- gfixDemo Form1 layout...........oooooi i 271
Figure 78- Results of clicking the Text Button............occciiii e 274
Figure 79- Results of InvRect button click. Note the tiny black crosshair center

o1 (=TT o PP PPPPR PRI ST 275
Figure 80- Ellipses demonstrates drawing lines and ellipses....................fhwie. 278
Figure 81- Output after clicking the FillRect button..............cccccciiiiiiiiiic s 280
Figure 82- Using Draw.Polygon to draw a triangle...........cccceveevveeeeinninnniiini. 282
Figure 83- Using Draw.Polyline to draw liNes...........ccccoiiiiiiiiiiiin i 284
Figure 84- Using tiled images with the Tilelmg button of our demo program....292
Figure 85- Loading an SVG file in Gambas. ..o 295
Figure 86- Error results caught with TRY ..o 305
Figure 87- CATCH test program opening SCreeN............uuveeeeeeeieieeeeeeeeeeeaaiiiainns 307
Figure 88- Div by Zero error caught by CATCH........ccciiiiiiiiiiiie e 307
Figure 89- The TextLabel updated with error info..........cccoooviiiiiii i, 308
Figure 90- Info message that the error is cleared............cccovvvvviiiiiiiiniini, 308
Figure 91- Main screen after error has been cleared.............cccoveeeeiiii i, 308
Figure 92- Default Gambas error dialog.........coouueieiiieeiniieeiiee e e 309
Figure 93- Our event was raiSed............oooviiiiiiiiiiiiieiee e e 311
Figure 94- MouseOps program FUNNING..........occveereeeeeaeeeeeeeeesaaseeeeeeeeessses bbeeanns 315
Figure 95- KbdOps program rUNMING..........ueeeeeeereariiiieeeeeeeae e e e aeisieeeeeeeeaes i 318
Figure 96- The BitOps program in design mode.........ccccuuummueimiiiiniiiiiiiiniien e 320
Figure 97- Our bitOps program FUNNING............ueeeeeeeieireaaeeee e et 325
Figure 98- The FMain form in design mode............coooiiiiiiiiiiiiiii s 339
Figure 99- FRequest Form in design mode...........c.ueieeiiiiiiiiiiiiiieeeeeeeeeee i 339
Figure 100- Choosing the Translate option in Gambas............ccccoeiiiriionin 356
Figure 101- The Translate Dialog in Gambas...........cccccceeiiiiiiiiiiiieeeeeene i 356

14

A Beginner's Guide to Gambas

This page is intentionally blank.

15

A Beginner's Guide to Gambas

Acknowledgments

First of all, a very special thanks to Benoit Minisini for the creation of Gambas
and for his support of this effort to further document this wonderful language. - Without
Benoit's initiative, we would all be struggling to find a better tool than what exists today
on Linux platforms. Much of the initial documentation of the Gambas language was put
on the Gambas Wiki by Benoit and he deserves special credit for making this information
available. As it was the only known published source of definitive documentation in
existence prior to this writing, much of the reference material herein was gleaned from
that initial set of documentation. As with any written material, there is no guarantee
that this documentation is as accurate as what you may find in the latest release ‘of the
Gambas product.

The author would like to extend a special thanks to Fabien Bodard for his help in
making this work become a reality. Fabien tirelessly edited code, reviewed the sample
projects presented herein, and provided great insight into the inner workings of Gambas
— all at the time of harvest for his vineyard. Laurent Carlier and Steve Starr both also
deserve my gratitude for their meticulous work editing the code and ensuring everything
worked as advertised. Their feedback, suggestions and corrections were greatly
appreciated. I would also like to thank Daniel Campos who was a great asset in helping
me to understand some of the finer points of Gambas. Nigel Gerrard also contributed to
the success of this project by providing a final review and edit of the database material.
From among these Gambas Hall of Fame coders, who else could have done it better?

Countless emails were received from many members of the Gambas community,
all of which provided ongoing encouragement and support which motivated me: to
complete this effort and make it available to everyone. Given the difficulties of writing a
book in the first place, it was a great feeling of satisfaction to receive such support from
complete strangers who all share the single vision of making Gambas a success. -1 can
only hope that this book will do justice to that effort and welcome any suggestions for
change, as well as any compliments or constructive criticism. It has been a lot of fun to
learn this wonderful new language and to explore the possibilities it offers. I dedicate
this book to all of those Gambas users and developers who have relied on each other in
the Gambas user/developer community to make this product become reality.© Shared
vision, common goals, and open software are powerful forces that should not ever.be
underestimated. Such forces have been known to change the world and will continue to
do so long after this book has been read and forgotten.

John W. Rittinghouse, Ph.D., CISM
October, 2005

16

A Beginner's Guide to Gambas

Foreword

For the last three years, I have plunged headfirst into the Linux
programming environment. Considering my first installation of Linux was back-in
1996, it should not be considered a good first start. As an enthusiastic Basic
developer, the Linux environment lacked a tool that would allow me to easily
program in the Linux environment. By chance, I stumbled upon a small project,
the fruit of more than two years of work from a man named Benoit Minisini. After
figuring out how to get past the idiosyncrasies of compilation, I discovered what
was to be the embryonic stages of one of the most fabulous projects i could have
imagined, Gambas! At that time, Gambas was already implemented with it's own
Integrated Development Environment (IDE) and a syntax highlighter. The ability
of Gambas to dynamically load components and remain fairly true to the Basic
language as used under Windows was an added benefit.

Today, Gambas has arrived as a mature product that, in it's first-version,
allows a user to construct graphical applications or console based applications,
supports database management, connection to the Internet or to socket servers,
utilizes data compression, supports DCOP with KDE applications, and much more.
A Gambas application can be translated directly from the IDE and packaged in
binary form for different Linux distributions. What was initially alluring to me
still is -- Gambas has gone beyond being just another programming language
because it supports all of the features of a "professional" product while retaining
its simplicity. Gambas provides a real tool for the beginning programmer and
makes it possible for a novice programmer to develop high quality applications.
Here, in this book, you will find the first comprehensive treatment of Gambas. "It
makes approaching the Gambas language simple and the reader can easily
progress from the beginner's level topics to the more advanced topics professional
programmers use daily.

Gambas has and will continue to evolve. Gambas Version 1.0 (discussed-in
this book) is the foundation of a language which will evolve to be even more
powerful. For example, Gambas Version 2 will make it possible to make API calls
to a native library. It will allow programmers to manage even more types of
database servers and will work equally well with either Qt or GTK graphics
libraries. Gambas 2 will allow programmers to develop their own components
from within the Gambas environment. Developers will be able to create games
using SDL and OpenGL. The scope of the Gambas language is growing larger and
and the syntax is becoming more compact. All of these ideas for improvement

17

A Beginner's Guide to Gambas

and change do not rest solely in the heads of a stable of chosen developers
working on the Gambas 2 project. They come from all Gambas users who provide
the ideas that make Gambas 2 even better than before. Already it can do so much
more than version 1.0. I strongly recommend that while you are waiting for ‘the
stable release of Gambas 2, you begin your Gambas training with your machine
and what you will find in this book. It will prepare you for a wonderful
programming experience in the Linux environment.

Fabien Bodard and Benoit Minisini

18

A Beginner's Guide to Gambas

Chapter 1 - Introducing Gambas

Gambas was initially created by Benoit Minisini, a resident of the suburbs
of Paris. According to Benoit, Gambas is a Basic language with object extensions.
The name itself is a play on the words "Gambas almost means Basic" and,
according to the author, Gambas evolved because of his personal programming
experiences with the Microsoft Visual Basic® software product’. Rather-than
contend with the horrendous number of bugs and idiosyncrasies found in that
product, he decided to create Gambas.

Gambas is licensed under the GNU Public License® and has taken ‘on a life
of it's own due to its immense popularity. Gambas runs on most of the major
Linux platforms and the current (at the time of this writing) stable version-is
Release 1.0.9. Minisini makes it very clear that Gambas is not compatible with
Visual Basic and it will never be made compatible. The syntax and -internal
workings of Gambas are far better and more user friendly. Minisini stated: [sic]
that he “took from Visual Basic what he found useful: the Basic language, the
development environment, and the ability to quickly [and easily] make programs
with [graphical] user interfaces.”

Minisini disliked the overall poor level of programming that is common
among many Visual Basic programs. Many believe that this problem may be due
to the “enforced” use of quirky programming practices imposed on developers as a
result of the wide range of bugs and the strange idiosyncrasies of the proprietary
VB language. Gambas has been developed to be as coherent, logical and reliable
as possible. Because it was developed with an approach designed to enhance
programming style and capture the best the Basic programming language has-to
offer, the addition of object-based programming has allowed Gambas to become a
popular, modern, stable, usable programming environment for Linux developers.

Gambas Architecture

Every program written with Gambas Basic is comprised of a set of project
files. Each file within a project describes a class. The class files are initially
compiled and subsequently executed by the Gambas Interpreter. This is very
similar to how Java works. Gambas is made up of the following programs:

1 The reader is encouraged to visit http:/gambas.sourceforge.net/index.html to learn more about the Gambas project.
2 For information about the license, visit http://www.gnu.org/licenses/licenses.html#GPL .
3 See the Gambas Wiki Web Site Introduction at http:/gambas.sourceforge.net/index.html for more details.

19

A Beginner's Guide to Gambas

v A compiler

v An interpreter

v An archiver

v A graphical user interface component
v A development environment

Figure 1 below* is an illustration of the overall architecture of Gambas. - In
Gambas, a project contains class files, forms, modules, and data files. A Gambas
project is stored in a single directory. Compiling a project uses in incremental
compile method that only requires recompilation of the modified classes. Every
external reference of a class is solved dynamically at runtime. The -Gambas
archiver transforms the entire project directory structure into a standalone
executable. The Gambas development environment was written with Gambas to
demonstrate the fantastic capabilities of the language.

Gambas Project Folder
fe.form, *.class, *.module, *.png, etc.

[Gambas Compil er..

ompiler output

[Gambas Archiv er.

v
K}gu;pa,s, Exe cutable.
|

Class Loader

Component Interface

Gambas Interpreter

Execution Unit
and
Debugger

Component Loader

- | Components
Native classes and
ob component 1 Components

Figure 1- General overview of Gambas architecture.

Some other features that set Gambas apart from other languages include
the fact that Gambas has an extensible component architecture that allows
programmers to extend the language. Anyone can write components as shared
libraries that dynamically add new native classes to the interpreter. The
component architecture is documented online in the Gambas Wiki encyclopedia®.

4 See URL http://gambas.sourceforge.net/architecture.html, for the original graphic.
5 Copyright (c) 1999-2005 by contributing authors. All material on the Gambas Wiki is the property of the contributing

20

A Beginner's Guide to Gambas

We will cover Gambas components in greater detail later in this book. By default,
the Gambas Interpreter is a text-only (console-based) program. The component
architecture is used for the graphical user interface (GUI) part of the language.
Because the GUI is implemented as a Gambas component, it has the ability to be
independent of any specific GUI toolkit. With Gambas, you can write a program
and choose which toolkit, such as GTK+°, Qt’, etc., to use later. The current
release of Gambas implements the graphical user interface with the Qt toolkit.
The GUI components are derived directly from the QT library. It is recommended
that the reader also consult with the QT documentation® to better understand the
GUI controls. According to Minisini, a GTK+ component with a nearly identical
interface as the Qt component is planned.

‘Welcome to Gambas ! -

Gambas Sy
™ New project Recent projects
J Database
[E Open project - et
[> Recent projects DataReporiExample
(@ Examples W& radicbuttons-in-groups
J Database
o g Collection
‘s TreeView
G Notepad
% KateBrowser

Figure 2- the Gambas Opening Screen.

authors.
6 For more info about GTK+, visit http://www.gtk.org/ .

7 For more info about Qt, visit http:/www_trolltech.com/products/qt/ .
8 http://doc.trolltech.com/3.3/index.html

21

A Beginner's Guide to Gambas

Another feature of Gambas that sets it apart from other programming
languages is the capability of any window or dialog box to be used like a control.
This feature is not directly supported in other programming languages. -Also,
Gambas projects are easily translatable, into almost any other language. ~“We will
demonstrate this feature later in the book when we cover Internationalization
(i18n).

The Gambas Programming Environment

For now, let's take a quick tour of Gambas and introduce you to the
Gambas programming environment. All of the examples and code written for this
book were developed using Gambas version 1.0.9 running on Linspire® 5.0°.
They should work on any platform that you can install Gambas on successfully.
For Linspire® users, it is as simple as the click of a button using the Click-N-Run®
warehouse feature of that product. When you first click the desktop icon to start
the Gambas program, you will be presented with an opening screen similar. to that
found in Figure 2 above. The welcome screen allows you to create a new project,
open an existing project, view and select from recent projects, look at examples,
or quit. For our quick tour of Gambas, we are going to select the New Project
option and create our first Gambas project. You will see a dialog similar to Figure
3 below appear.

Welcome to the Gambas project creation w
wizard!

This wizard allows you to create a new Gambas project. This project will be
created from scratch or from an already existing project.

Press the Next button to start creating the project

Press the Cancel button to cancel the wizard.

[Nexi> | [= gl IJ

Figure 3- The Gambas Project Creation Wizard.

9 For more info about Linspire, visit http://www.linspire.com .

22

A Beginner's Guide to Gambas

Simply click the Next>> button and you will be presented with another
dialog that requires you to choose the type of project you want to create (see
Figure 4, below). This dialog requires you to pick between a GUI project or a
console project.

e ————— s}

Select the type of the project

& Create a graphical project

i Create a terminal project

¢ Copy an existing project

= B | ,WI | = Cancell

Figure 4- A dialog to select the type of Gambas project you wish
to create.

For our example, choose the first selection, “Create a graphical project” and
click the Next>> button at the bottom of the dialog. The next dialog that you
will see requires you to name your project and choose where it will be located ‘on
your local file system. It is shown in Figure 5 below.

This section of the wizard has you to specify the name of the project as it
will be stored on disk. Remember, in Gambas a project is entirely self-contained
in a directory or folder. The folder name you choose as the name for the project
is what will be created on your system.

The title of the project will be what you specify in the second text input
field of the dialog. Additionally, the Options section allows you to choose
whether or not your project will be translatable and if the controls used on'your
forms are going to be made publicly accessible. We will discuss these option in
more detail later in this book. For now, just fill out the dialog as shown in Figure
5 and click Next>>.

23

A Beginner's Guide to Gambas

Create a new project

Select the name of the project

|F|rstPr0]ec‘r

Select the title of the project

|My First Project

Options
¥ Project is translatable

¥ Form controls are public

<< Previous | Next >> I | Cancel \lJ

Figure 5- Project Name Selection Dialog.

Choose a directory appropriate for your file system and click the Next>>
button to proceed to the final dialog screen of the wizard, as shown on the
following page in Figure 7. This dialog is simply a confirmation screen of the
choices you have made. The most important thing to remember about this screen
is that it is the last chance you have to back up and make changes before your
new project is created.

Create a new project

Select the directory of the project

Lookin [froot/Development B = ef S
NEE=E][vame 5 |Size |Typs

T—| —[Oc_dev (@& Database 1K Gambas
[C1Desktop @ irtest 1 K Gambas
§ &= Development |
CIECDICT
Clisam
~[(JavaDev
~[JLiguor
My Computer
CIMy Documents
- [CIMy Downloads
CIMy Programs

CaNetwork

~-CIRPM

Catutorial z 7| | |
Directory |Deve|opment
<< Previous I Next >> I I Cancel |]

Figure 6- Project Directory Selection Dialog.

24

A Beginner's Guide to Gambas

= Createanewproject——— O

Create a new project ﬂ
All needed information have been collected. Here is a summary of

what will happen

Click on the OK button to create the project.
Click on the Previous button if you had made a mistake

Click on the Cancel button to cancel the operation.

Create a graphical project —
Project name

FirstProject

Project directory

froot/Development

Options
+ Project is translatable =
== Previous I I OK Cancel I]

Figure 7- New Project confirmation dialog.

Once you have clicked on the “OK” button to finish this wizard, Gambas
will present you with the Gambas integrated development environment (IDE).
The IDE consists of several components that are shown in Figure 8 on the next

page.
Gambas IDE Components

The Project Explorer is the main Gambas window. It show you a TreeView
of the types of files found within your project (i.e., class files, forms, modules, and
other types of files such as data and picture or icon files) and the Project Explorer
allows you to perform most Gambas project management operations, -such-as
opening and saving projects, building executables, running your program -or
debugging it, showing or hiding various Gambas dialogs, etc. From the TreeView
in the Project Explorer, you will see the items listed as follows:

v Classes
v Forms
v Modules
v Data

Classes lists the class files you've created for your project. Classes are

basically templates that can be used to make objects out of at runtime, with code
to define properties, methods and event handlers for each object you create.

25

A Beginner's Guide to Gambas

Project - FirstProject @ =———— MainFormform[modified] ————————— Q¢ Toolbox @
File Project View Tools ? P Form

DE@RE s AN
PuEGHHE

X A abcwx][] V]

=@ FirstProject @ C] @] b NS
{-&Classes S Lo
=-E3Forms b a1 9 |
EModules Ui U3 {j {7\] | @
i Sk C’:} The Toolbox window
)
Properties @@
(Class) Button
(Name)
MainForm.class 1:1 (Group)
s . BOE L BE®o o bl d 0L X
This i the project explorer TGambas class file il a0
N width 88
| STATIC PUBLIC FUNCTION Run() AS Boolean ‘H/swgbl‘m id
B visible e
E| DM hForm AS Form B [Enabled True
Font
hForm = NEW MainForm Background
d| RETURN hForm.ShowModal() Code window :megmund
ag
END Mouse Default
ToolTip
PUBLIC SUB btnOK_Click() Evop . Ea:se
xpan alse
ME.Close(TRUE) ;ext
icture
END Border True

Default
PUBLIC SUB btnCancel_Click() Cancel

ME.Close() Properties window

END

oK. status bar

Figure 8- The Gambas IDE.

Forms lists the various forms you create for your project. Forms. are the
windows the user actually interacts with.

Modules display the modules you've written for your project. Modules are
simply sets of subroutines and functions to be used anywhere in your program.
Unlike classes, you can't make objects out of them at runtime and they have no
event handlers.

Data lists the other files in your project. These can include any other kind
of file used to build your project, such as graphic files, icons, bitmaps, text or
HTML files, and even media files. At the bottom of the Project Explorer-you will
find the Status Bar which is used to indicate what Gambas is currently doing:

When you start to develop a project in Gambas, you will usually want to
begin with a main form. The main form is where the program startup-and
initialization will occur and it is usually the first thing your user will see when
they execute (or run) the application you have built. This is the form you will add
controls to and specify what actions are to be taken when the user interacts with

26

A Beginner's Guide to Gambas

those controls. Such interaction between the user and the GUI is referred to as
events. The controls are found in the ToolBox window. You can change the
appearance and behavior of the controls by setting the properties for each control.
Properties can be seen in the properties window.

Now, lets take a look at the menus and buttons found at the top of the
Project Explorer. The menus (see Figures 9 through 12 below) control all the main
Gambas management tasks. The File menu will allow you to open a project, save
a project, create a new project, open some Gambas example projects; or quit
using Gambas. The Project Menu is where program compilation occurs. “You can
also create the program executable, make a source archive, or create ‘an
installation package. This menu offers you the option of translating your
program into another language. Finally, you can set Gambas IDE properties from
this menu.

Project - FirstProject Project - FirstProject

IﬁErUjem View Tools ? File | Project View Tools 2
- [0 MNew project... Cirl+N H m@ Compile F7
& Open project... Ctrl+O B> |4 Compile Al Alt+F7
Open recent 3 ‘Qlﬂ Make executable. Ctrl+Alt+h
Open example ’ _ Make source archive. .
B Save project Ctrl+Alt+5 ﬂ Make installation package...
£ Quit Ctrl+0 é’] Translate. .. Ctrl+T
Fiaqure 9- Project Explorer File Menu. o Eefresh
Properties. .. Alt+Retur

Figure 10- Project Menu.

Project - FirstProject

(e e e File Project View |Tools ?

0 & B 5] Properties F4

B Il W T s Toobox - O & 5 & @ Database manager...

=-@FirstPro [y Hierarchy Ctrl+H B Il B P ¢ Preferences... C
E3C1as gy Gonsole Fi1 S
;-&Forn : Figure 12- Project Explorer Tools Menu.
N leon editor F12
'E Modh Close all windows Ctrl+Altq
i PR

Figure 11- Project Explorer View Menu.

27

A Beginner's Guide to Gambas

The View menu will allow you to bring up the properties window or the
ToolBox window. You can open a console or use the Icon Editor to create
program icons. The Hierarchy option will open a window and show you your
project's class hierarchy. Finally, from this menu, you can close all of the windows
that are currently open in the IDE. The ToolBar buttons (see Figure 13 below)
provide single-click access to the most common menu items. Hovering your mouse
cursor over one of the buttons will display a ToolTip that will tell you what menu
action that particular button will perform.

Figure 13 below shows you the File menu and ToolBar. From the Project
Explorer TreeView you can double-click on a form and it will pop up for you-to
edit. Editing forms is simply a matter of selecting what type of control you'd like
to place on the form and then using the mouse to resize (draw) it on your form:

File Project View Tools ?

DFEF &0 H
R H O

Figure 13- Project Explorer Menu and Toolbar.

Right clicking on the form or any of its children (controls) will show you-a
pop-up menu that will allow you to perform operations on the control; edit:its
properties or delete it. The currently selected control is indicated by four black
squares called handles. Clicking on a handle and using the mouse to drag the
control where you want it will allow you to move or resize the control. “Double-
clicking on a control will bring up the code editor window and display any
existing event handler for the control or display a default event handler if there
have been none specified.

The Gambas Code Editor enables you to write code to handle events for the
controls you've placed on your form. In the ToolBox window, the Selection Tool
is the only item in the ToolBox that isn't actually a control. The Selection Tool
simply gives you control of the default mouse pointer. You use this pointer:to
select controls and perform positioning and resizing operations on forms and their
associated controls.

From the Project Explorer File Menu, choose the Quit option and save your

project. When we reopen it, all your work will be saved. In the next section, we
will begin to cover the essentials you need to understand in order to program with

28

A Beginner's Guide to Gambas

Gambas. We will come back to this project to develop a program that uses the
GUI after we learn a bit more about the Gambas coding environment, the primary
language concepts that are required to use Gambas, and some basics about-data-
types and variables. That is all covered in the next section and constitutes the
remainder of this introduction to Gambas programming. For now, take a short
break and we will continue when you come back.

29

A Beginner's Guide to Gambas

Chapter 2 — Gambas Language
Concepts

In this chapter, we will begin to learn the basic concepts needed to master
the Gambas programming language. The topics we will cover in this-chapter
include learning about Gambas data-types, constants, and variables and how to
declare and assign values to those constants and variables. We will learn about
the basic arithmetic operators, comparison operators, and string operators.

Gambas Variables, Data-types and Constants

Variables must be defined at the beginning of a class, method or function.
Variable declarations can either be local to a procedure or function or they can‘be
declared global to a class. A global variable is accessible everywhere in the class
it is declared. The format of a global variable declaration in Gambas takes the
following general form:

[STATIC](PUBLIC]PRIVATE) Identifier [Array declaration] AS [NEW] Data=type

If the PUBLIC keyword is specified, it is also accessible to the other classes
that have any reference to an object of that class. If the PRIVATE keyword is
specified, it is not accessible outside the class in which it was defined. If the
STATIC keyword is specified, the same variable will be shared with every object
of the class where it is declared. If the NEW keyword is specified, the variable is
initialized with (i.e., instantiated with) a new instance of the class using the data-
type specified. For local variable declarations, the format is like this:

[DIM] Identifier AS Datatype

This will declare a local variable in a procedure or function. This variable'is
only accessible to the procedure or function where it is declared. An example of
several local declarations is shown below:

DIM ivalue AS INTEGER

DIM stMyName AS STRING

DIM fMyMatrix[3, 3] AS FLOAT
DIM oMyObject AS OBJECT

30

A Beginner's Guide to Gambas

There are currently nine basic data-types a programmer can use to write
program code in Gambas'. These data-types include the following:

Boolean Byte Short
Integer Float Date
String Variant Object

Boolean data-types can contain only a single value, either TRUE -or
FALSE. TRUE is defined as 1 and FALSE is defined as 0. The declaration of a
Boolean variable occupies 1 byte of memory and the default value is FALSE. An
example of a variable declaration for a Boolean variable looks like this:

STATIC PRIVATE bGrid AS Boolean

Typically, a programmer would use a Boolean data-type when the only
values for the variable would be yes/no, TRUE/FALSE, 1/0, etc. If the values
used in your program could be anything else, Boolean would be an inappropriate
selection for the variable data-type. Another thing to note in the wvariable
declaration above is the placement of the lowercase letter b in from of the
variable name.

Good programming convention encourages this practice, known as the
Hungarian Notation, as it allows the programmers to know what data-type the
variable is by simply knowing that the 'b' stands for Boolean. What happens when
a programmer wants to use a Byte data-type instead of a Boolean data-type?
Typically, a second letter is added to the variable declaration so rather than using
'b' in front of the variable name the programmer would use 'by' as below:

STATIC PRIVATE bySomething AS Byte

The letters 'ar' 's', 'i', 'f, 'd', 'st, 'v' and 'o' are commonly used notations
when declaring variables while programming in Gambas. It is good programming
practice to force yourself to adhere to this technique so that others can.pick up
your code and use it without having to search around to find the data-type for
each variable encountered. Some programmers even use more than the first letter
(s) to name their variables. For example, they would code IntMyNumber or
ByteSomething.

10 In the second release of Gambas (Gambas2) "Long" and "Single" data types are planned. These data-types are like the C
LONG LONG and FLOAT data types. This is a significant improvement because Gambas2 will provide direct programming
access to the C API and will also support 64 bit platforms.

11 Hungarian Notation (HN) is a naming convention originated by Charles Simonyi of Microsoft. It was first presented in his
thesis and is widely used throughout the source code of the Windows operating system, among other places.

31

A Beginner's Guide to Gambas

The Byte data-type can contain values from O to 255 and occupies one
byte of memory when declared. The default value when a Byte data-type is
declared is 0. If you are certain your values will not exceed 255 then this data-
type is appropriate for use. If it is possible that the values assigned to this
variable would exceed 255, then the likely result would be a program crash at run
time. It is better to use the Short data-type or an Integer data-type for such
situations. For a Short data-type, values can range from -32768 to +32767.
Short data-types occupy two bytes of memory and default to a zero value when
declared. Integer data-types occupy twice as much memory, taking up four bytes.
The range of values you can use with the Integer data-type is from
-2,147,483,684 to +2,147,483,647. This is similar to the LONG data-type used-in
VB. Examples of Short and Integer data-type variable declarations are:

STATIC PUBLIC sSomeShort AS Short
STATIC PUBLIC iSomeInteger AS Integer

When integers will not work for your purposes, Gambas provides you with
the Float data-type. This data-type allows you to use floating point numbers for
your program. Float data-types are like Double data-types used in C and VB. The
range of values for float data-type variables is from -1.79769313486232E308 to
-4.94065645841247E-324 for negative values and from 4.94065645841247E-324
to 1.79769313486232E308 for positive values. Float variables occupy eight bytes
of memory and default to a zero value when declared. A sample declaration for a
float would be as follows:

DIM fRadius AS Float

The last numeric data-type we have in Gambas is the Date data-type.-Date
variables also take up eight bytes of memory. The date portion of the date is
stored in a four byte integer and the time portion is stored in a four byte integer.
It is stored as [Year, Month, Day][, Hours, Minutes, Seconds] and is. usually
used with the Gambas built-in Date and Time functions, which we will' explain
about later in this book. The date data-type defaults to a NULL value when
initialized. Here is how to declare a Date data-type:

DIM ddate AS Date
DIM dtime AS Date

Strings, Variants and Objects are the non-numeric data-types supported in

Gambas. A String data-type is a series of zero or more characters that are
treated as a single entity. Strings can contain alphanumeric data. Alphanumeric

32

A Beginner's Guide to Gambas

means that the data can contain any combination of letters and integers or special
characters such as $% ™ &*. Strings, when declared take four bytes of memory.
This means the maximum size for a string is 4 bytes * 8 bits per byte, or 32 bits
squared (1,024 bytes). String variables default to a NULL value when declared.

Declare a string variable just like you would any other variable:
STATIC PUBLIC stSomeString AS String

The Variant data-type is used when you do not know what kind of data-
type the variable will be receiving. For example, if reading data from a file, you
could read an integer, a string, a single character, floating point numbers; ete. To
ensure the data is placed in a variable without causing a program crash, the
variant data-type is used. You can then test the variant data using some built-in
functions of Gambas to determine the data-type or you can just convert the data
to the data-type you need using a conversion function. We will demonstrate this
later in the book. For now, it is only important that you understand that variant
data-types exist and that they are used when you are not sure of the type of data
the variable will hold.

The Object data-type is a special data-type that holds and references
objects such as controls and forms. Later, when we begin to discuss OO
programming, we will cover the use of object data-types in greater detail. The
table shown below is presented as a convenient reference:

Gambas data-types

‘ Name Description ‘ Memory size Default

Boolean True or False 1 byte FALSE

Byte 0..255 1 byte 0

Short -32768 ... +32767 2 bytes 0

Integer -2147483648 ... +2147483647 4 bytes 0 =0
Float Similar to the double data-type in C 8 bytes 0 =

Date Date/time, each stored in a 4 byte integer. 8 bytes NULLV s
String A reference to a variable length string. 4 bytes NULLV 2 D
Variant Can consist of any data-type. 12 bytes NULL

Object An indirect reference to an object. 4 bytes Null

Now that you know about all the different types of data that Gambas
supports, we will start to look at what you can do with those data-types. When
using your variables in Gambas programs, they can be represented by data that
changes (e.g., it is a variable) or they can be represented by data that remains

33

A Beginner's Guide to Gambas

constant throughout the program. This type of data is known as a Constant in
Gambas. Gambas constants is used to represent a NULL object reference, a zero
length string, a NULL date, or an uninitialized variant. Examples of constants
include the values NULL, TRUE and FALSE. To declare a constant in Gambas use
the following format:

(PUBLIC | PRIVATE) CONST Identifier AS Datatype = value

This declares a class global constant. This constant is accessible
everywhere in the class it is declared. If the PUBLIC keyword is specified, it-is
also accessible to the other classes having a reference to an object of this class.
Constant values must be Boolean, integers, floating point or string data-types.
Here are some examples of constant declarations:

PUBLIC CONST MAX FILE AS Integer = 30
PRIVATE CONST MAGIC_HEADER AS String = "# Gambas form file"

The built-in constants you would use in Gambas are listed in the table below:

Gambas Constants

Constant ‘ Example

The TRUE value. TRUE

The FALSE value. FALSE

Integer numbers. 0,562,17,-32769 k =
Hexadecimal short signed integers. &H100F3, &HFOFF, &FFFF :
Hexadecimal signed integers. &H1ABF332E, &1 CBF302E

Hexadecimal unsigned integers. &H80A0&, &HFCFF&

Binary integers. &X1010111101, %101000011 5
Floating point numbers. 1.1110, -5.3419E+4

String constants. "Hello, Gambas World!"

String constants to be translated. ("This is very, very cool") T2

NULL constant / void string. NULL

34

A Beginner's Guide to Gambas

String constants can also contain the following escape characters:

Escape character ‘ASCII equivalent

\n CHR$(13)

\r CHR$(10)

\t CHR$(9) s

\” Double quote

\\ Backslash

\Xx CHR$ (&Hxx) = 3

You can write a string constant in several successive parts. For example,

mmns=,nn

"My son" " is " "sixteen" is seen by Gambas as "My son is sixteen".
Variable Assignment

A programmer can assign any value to a variable in Gambas by using the
following general format:

Variable = Expression

This assignment statement assigns the value of an expression to one of the
following elements:

v Alocal variable

v A function parameter

v A global (class) variable

v An array element

v A public object variable or property

Here are some example of variable assignments:

iMyval = 1984
stMyName = "Orwell"
fMyNum = 123.45

Assignment Using The WITH Statement

This statement is most commonly used to set properties for controls. The
expression that exists between the WITH keyword and the END WITH instruction

35

A Beginner's Guide to Gambas

is used. The expression will begin with dot notation, i.e., .Text could be used.
WITH assigns the dotted expression on the left of the equal sign the value found
on the right side of the equal sign. Expression must be an object. Here is a
sample of how the WITH structure looks:

WITH Expression
.object = “something”;.
END WITH

As an example, the code below is code equivalent to hButton.Text = "Exit"

WITH hButton
.Text = "Exit"
END WITH

Operators and Expressions

Now that we know how to declare variables and constants and how to
assign values to these variables and constants, lets take a look at the operations
that can be performed with them. We will begin with comparison operators then
take a look at arithmetic operators and string operators.

Comparison operators
Comparison of two variables requires finding answers to questions like

“does x equal y” or “is a less than b”. The following comparisons are supported in
Gambas:

Operator Meaning Example

= Is equal to IF a = b THEN ...

<> Is not equal IFa <> c THEN ...

< Is less than IF a < d THEN ...

> Is greater than IFa > e THEN ... =

<= Is less than or equal to IFa <=fTHEN ... SR
>= Is greater than or equal to IF a >= g THEN ...

Arithmetic Operators

All of the basic arithmetic operations are supported in Gambas. These

36

A Beginner's Guide to Gambas

operators include addition, subtraction, multiplication, and division. The
standard symbols for these operations are '+', -, "', and '/'. For example,
Number + Number will add two numbers. When a value or variable is preceded
by a minus sign, -222, for example, Gambas computes the opposite sign of that
number. The value Zero is the opposite of itself. Now, we will start to write some
Gambas code using the Gambas terminal application feature. The console
window will display our output so lets use Gambas to experiment with the
operators as we learn about them.

Let's Start Coding Gambas

Now that we know about data-types and variable assignments, lets get our
feet wet with Gambas. Start Gambas and from the Project Explorer File Menu
select New Project. As you go through the New Project Wizard, select a Terminal
Project and click Next. Name this project TerminalTest and place it in a directory
called TerminalTest. Don't worry about any of the other options. Just click
Next>> until the wizard completes. Once the IDE appears with your new project
we will need to create a startup class in order to run our code. From the Project
Explorer find the TreeView item called Classes and right-click the mouse.-Choose
the New... option and take the default name Class1. The code window will
appear and inside the window it should look something like this:

' Gambas class file
STATIC PUBLIC SUB Main()

END

Let's take a look at some Gambas keywords you should know a bit more about
before we proceed.

END, RETURN and QUIT Statements

The END keyword indicates the end of a procedure or a function. There
are differences from VB when using END. In VB, the End command closes -all
forms and files and terminates the program. In Gambas, the END command works
more like VB's End Function combined with VB's End Sub. It closes the function
or subroutine. For the functionality of VB's End command, use the QUIT
command. It ends the program immediately. All windows are closed; and
everything is freed up in memory as cleanly as possible. In Gambas, when you
wish to exit a routine, you can use the RETURN command. Usually, RETURN is
used to return a value to the calling procedure. The format of RETURN is:

37

A Beginner's Guide to Gambas

RETURN [Expression]

When Gambas executes the RETURN command, it quits a procedure or a
function and completes its work by returning the value of Expression. Now, enter
the following code after the ' Gambas class file line (note that comments in
Gambas start with the ' [aka the tick mark]) and between the STATIC PUBLIC
SUB Main() and END statements. Once you have entered the code below in the

Gambas code window, click the green button from the Project Explorer
ToolBar to execute your program. Here is the code you want to try first:

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N =3

R = -6

PRINT “===> #“ : N; " I n ;R; (1] and " ; -N : " I " ; —R;
END

If all goes well (and it should), you will see the blue shrimp (a.k.a., the Gambas
mascot) dance and the console window will respond with the following:

===> 3 | -6 and -6 | 3

Note that the value of variable N changed from a positive 3 to -3_and the
value of -6 changed to a positive value of 6. Don't worry about the syntax of the
PRINT statement or the use of the keyword DIM used to declare our variables for
now. We will cover these keywords later in the book.

To subtract values, use the format Number - Number and Gambas will
subtract the second number from the first.

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N =8
R =25
PRINT "===> "; N-R;

END

The console will respond with the following:

==> 3

38

A Beginner's Guide to Gambas

To multiply numbers, we use the format of Number * Number and
Gambas will multiply the two numbers. Here is another console example to try:

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N =8

R=5

PRINT "===> "; N * R;
END

The console will respond with the following:

==> 40

Division is no different than multiplication. Use the format of Number /
Number to have Gambas divide two numbers. A division by zero error will ‘occur
if the value of the number to the right of the slash is zero. Try this console
example:

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N=29

R =3

PRINT "===> "; N / R;
END

The console will respond with the following:
==> 3
Now try using the \ to divide instead of the / character:

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N =29

R=5

PRINT "===> "; N \ R;
END

The console will respond with the quotient:

==> 1

39

A Beginner's Guide to Gambas

If you use a backslash to divide numbers, i.e., Number \ Number Gambas
computes the quotient of the two numbers. A division by zero error will-occur. if
the value of the number to the right of the backslash is zero. A \ B is the
equivalent of INT(A/B). To get the remainder, we can use the built-in ‘MOD
function like this:

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N=29

R=25

PRINT "===> "; N \ R; " and the remainder is: ";9 MOD 5;
END

The console responds with:
===> 1 and the remainder is: 4

Using Number MOD Number computes the remainder of the quotient of
the two numbers. A division by zero error will occur if the value of the number to
the right of the MOD operator is zero. Finally, we can test the Division by Zero
error by typing this example:

STATIC PUBLIC SUB Main()

DIM N AS Integer
DIM R AS Integer

N=29

R=0

PRINT "===> "; N / R;
END

Gambas will respond with the following:

P
L7

e: Division by zero

Stop il Continue

Figure 14- A Division by Zero Error Dialog.
NOTE: Click the Stop button when you see this dialog appear.

40

A Beginner's Guide to Gambas

In order to raise a number to a given power (exponent), use the format of
Number ~ Power and Gambas raises Number to the power the Power operator
specified. Try this:

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N =2

R =3

PRINT "===> "; N " R;
END

The console will respond with the following:
==> 8

Gambas also has the ability to support logical arithmetic operations'.
Using the format of Number AND Number instructs Gambas to use the AND

operator to compute the mathematical AND of the binary values of both of the
numbers. Try this:

STATIC PUBLIC SUB Main()

DIM N AS Integer
DIM R AS Integer

PRINT "=> ";N AND R;" is the AND result of ";N;" and ";R
PRINT "=> ";N AND R;" is the AND result of ";N;" and ";R

PRINT "=> ";N AND R;" is the AND result of ";N;" and ";R
END

The console window responds with:

=> 0 is the AND result of 0 and 0
=> 0 is the AND result of 0 and 1
=> 1 is the AND result of 1 and 1

Likewise, Number OR Number used the OR operator and computes the
mathematical OR of the binary value of the two numbers.

12 In Gambas2, it will allow the use of concatenated operators. For example, a += 2 or B /= 4 will work just as if you were
programming in C or C++.

41

A Beginner's Guide to Gambas

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

2
]
o

PRINT "=> ";N OR R;" is the OR result of ";N;" OR ";R
PRINT "=> ";N OR R;" is the OR result of ";N;" OR ";R

PRINT "=> ";N OR R;" is the OR result of ";N;" OR ";R
END

The console window responds with:

=> 0 is the OR result of 0 OR O
=> 1 is the OR result of 0 OR 1
=> 1 is the OR result of 1 OR 1

Number XOR Number uses the XOR operator and computes. the
mathematical exclusive OR of the binary value of the two numbers.

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N=20

R=0

PRINT "=> ";N XOR R;" is the XOR result of "; N; " XOR "; R
R=1

PRINT "=> ";N XOR R;" is the XOR result of "; N; " XOR "; R
N=1

PRINT "=> ";N XOR R;" is the XOR result of "; N; " XOR "; R
END

The console window responds with:

=> 0 is the XOR result of 0 XOR 0
=> 1 is the XOR result of 0 XOR 1
=> 0 is the XOR result of 1 XOR 1

Additionally, the following operators manipulate one or more numeric values and
return a numeric value:

DEC | INC | LIKE | NOT

42

A Beginner's Guide to Gambas

The DEC operator is used to decrement a value by one. The INC operator
will increment the value by one. The variable can be any target of an assignment
but must be a numeric value.

STATIC PUBLIC SUB Main()
DIM N AS Integer
DIM R AS Integer

N

R

DEC

INC R

PRINT "===> "; N; " | "; R;
END

i n
Z uun

The console will respond with the following:

==>4|6

LIKE is used to perform a Boolean comparison of a string. It takes ‘the
format of String LIKE Pattern and it returns TRUE if the String matches the
Pattern. The pattern can contain the following pattern-matching characters :

*

Match N number of any type of character.

? Match any single character.

[abc] Match any character specified between the bracket symboels:
[x-y] Match any character that exists in the interval x-y.

[x-y] Match any character that does not exist in the interval x-y.

STATIC PUBLIC SUB Main()
PRINT "Rittinghouse" LIKE "R*"
END

The console responds with:
TRUE

The special character \ prevents the next character following it in a string
from being interpreted as a generic part of the string. Think of the \ character as
a control code. Try this:

STATIC PUBLIC SUB Main()
PRINT "Samson" LIKE "S*"

43

A Beginner's Guide to Gambas

PRINT "Gambas" LIKE "?[Aa]*"

PRINT "Leonard" LIKE "G[Aa]*"

PRINT "Alfred" LIKE "G["Aa]*"
END

The console responds with:

TRUE
TRUE
FALSE
FALSE

Note: you must use a double backslash character, \\ to print a backslash or special
string sequence containing backslashes. Otherwise the \ will be interpreted by the
compiler as a special character like "\n', '\t\, '*', etc. Alternatively, you can use this
pattern string: LIKE "G[Aa][*]"

The NOT operator is used to return a result of an expression. The format-is
as follows:
Result = NOT Expression

When Gambas evaluates this expression, it computes the logical NOT of the
expression. If the expression is a string or an object, Gambas returns TRUE if the
expression is NULL. Here are some examples to try on your console:

STATIC PUBLIC SUB Main()
PRINT NOT TRUE
PRINT NOT FALSE
PRINT NOT 11
PRINT NOT "Gambas"
PRINT NOT ""

END

The console responds with:

False
True
-12
False
True

String Operators

In Gambas, when you want to compare or concatenate strings, you can use

44

A Beginner's Guide to Gambas

the string operators. These operators allow you to concatenate strings and file
paths, perform LIKE operations as explained above, determine if strings are equal
or not equal, less than, greater than, less than or equal to, or greater than or equal
to each other. The following table of string operations is shown for your
convenience:

Gambas String Operations

String Operation ‘ Result to determine

String & String Concatenate two strings.

String &/ String Concatenate two strings that contain file names. Add a path separator b;M;n
the two strings if necessary.

String LIKE Pattern Perform pattern matching using the LIKE operator. 2

String = String Determine if the two strings are equal.

String <> String Determine if the two strings different.

String < String Determine if the first string is lower than the second string =

String > String Determine if the first string is greater than the second string 2,

String <= String Determine if the first string is lower or equal to the second string = =

String >= String Determine if the first string is greater or equal to the second string =

Note : all string operator comparisons are case sensitive.

Here are some things to try using Gambas console:

STATIC PUBLIC SUB Main()
DIM a AS String
DIM b AS String

a = "ham"

b = "burger"

PRINT "===> "; A & B;

a = "Gambas"

b=1

PRINT "===> "; A & " is number " & B;
END

The console responds with:

===> hamburger
===> Gambas is number 1

45

A Beginner's Guide to Gambas

Chapter 3 - Keywords and Program
Flow Control

In Gambas, the programmer controls the program by using keywords and
conditional expressions. Gambas is an event driven language. The programmer
has the ability to direct what happens whenever any event occurs. ' The
programmer uses Gambas keywords (which are reserved words with very specific
syntax) to create instructions that guide what the program will do in-a given
circumstance. Conditionals are tests of an expression or a variable. The. test
could be an evaluation of the result of an operation or comparison of equality, for
example. The following table shows all of the Gambas keywords currently
supported:

BREAK CASE CONTINUE DEFAULT DO ELSE
END ENDIF END SELECT END WITH
FOR FOR EACH GOTO IF LOOP NEXT
QUIT REPEAT RETURN SELECT STEP THEN
TO UNTIL WAIT WEND WHILE WITH

The best way to understand what these keywords and conditionals-mean'is
to gradually introduce them with examples. Rather than go through the list-of
keywords in alphabetical order, let's take the approach of introducing them based
on the type of functionality they support. We will start with the most basic
statements and commands and progress through the more complex ones as we
continue. Let's start with the Gambas PRINT statement.

The PRINT Statement

The PRINT statement prints expressions to the standard output. = The
expressions are converted to strings by the Str() function. PRINT takes the format
of:

PRINT Expression [(;|,) Expression ...] [(;|,)]

Brackets used in the syntax definition above indicate optional parameters.
If there is no semi-colon or comma after the last expression, a newline character-is
automatically printed after the last expression. If a comma is used instead of a
semi-colon to separate expressions, then a tab character (ASCII code 9) is printed
between output values to separate the expressions. PRINT can also used to direct
output to a file. We will discuss printing to files when we get to the section on

46

A Beginner's Guide to Gambas

Input and Output. When using PRINT to write output to a file, expressions are
sent to the stream File and this format is used:

PRINT # File, Expression[(;|,) Expression ...]1 [(;|/,)]

Here is something to try using PRINT:

STATIC PUBLIC SUB Main()
DIM b AS Integer

b=1

PRINT "===> " & "b is: " & B

PRINT "===> ", " b is:", B

PRINT "===> "; "b is: " & B
END

The console displays the following output:

===> b is: 1
===> b is: 1
===> b is: 1

The IF Statement

The IF statement is used to make a decision. IF is one of the most common
structures used by programmers to make comparisons and decisions based on the
result of that comparison. Using IF logic, your program can perform comparisons
using operators you have learned about and subsequently make decisions based
on the result of such comparisons. IF takes the general form of:

IF Expression THEN
do something...
[ELSE IF Expression THEN

do something else...]
[ELSE

do something completely different...]
ENDIF

Here is an example using IF that you can try on the console:

STATIC PUBLIC SUB Main()

DIM b AS Integer
b=1

47

A Beginner's Guide to Gambas

IF b = 1 THEN
PRINT "===> " & "Gambas is number " & B;
ELSE IF b <> 1 THEN
PRINT "Should not print me!";
ELSE
PRINT "Something bad is happening"
ENDIF
END

The console responds with:

===> Gambas is number 1
The SELECT / CASE Statement

The SELECT statement evaluates an expression, comparing it to each CASE
specified, and will execute the code enclosed in the matching CASE statement-if
the expression evaluated is TRUE. If no CASE statement matches the expression
under evaluation, the DEFAULT or CASE ELSE statement is executed. — The
SELECT/CASE statement allows a programmer to build a code block capable of
evaluating many expression results without having to code an excessive amount
of IF/ELSEIF/ELSE statements. The format of the SELECT statement is:

SELECT Expression

[CASE Expression [, Expression ...]
[CASE Expression [, Expression ...]
[CASE ELSE | DEFAULT ...]

END SELECT

Here is some code to show you how to use the SELECT statement:

STATIC PUBLIC SUB Main()

DIM w AS Integer

w=1

' START: is a LABEL, used with GOTO explained below.
START:

PRINT "The value of w is: " & w

SELECT CASE w
CASE 1
INC w
GOTO START
CASE 2

48

A Beginner's Guide to Gambas

INC w
GOTO START
CASE 3
INC w
GOTO START
CASE ELSE
PRINT "The variable w has no handler for: " & w
END SELECT
PRINT "Final value of w IS: " & w
END

The console should respond with the following output:

The value of w is: 1

The value of w is: 2

The value of w is: 3

The value of w is: 4

The variable w has no handler for: 4
Final value of w IS: 4

Because the variable w was incremented to the value of 4 and there was:to
CASE to handle that value, the CASE ELSE block is executed. CASE ELSE can
also be written as CASE DEFAULT. Either way, it is where code defaults to when
no case satisfies the value of the variable being checked.

GOTO and LABELS

Note the use of the LABEL named START: in the previous code example.
The colon must be used with the label name and it must follow it without any
spaces between the label and the colon. Labels are the targets where a GOTO
instruction will direct program flow. While the use of GOTO should be judicious
it is sometimes necessary. It is used in the above example to demonstrate how-to
use GOTO and LABELS. Later, when we study looping structures, we will rewrite
this code to use a Gambas looping mechanism.

The FOR / NEXT Statement

Many times when writing code, programmers find the need to iterate
through a set of values (called looping) to process data. The FOR statement is a
looping statement commonly used in programs. It takes the general form of:

FOR Variable = Expression TO Expression [STEP Expression] ... NEXT

49

A Beginner's Guide to Gambas

The FOR statement repeats a loop while at each iteration of the loop
incrementing a variable. Note that the variable must be a numeric data-type (i.e.,
a byte, a short, an integer or a floating point number) and it must be declared as
a local variable. If the initial expression the FOR statement evaluates is higher
than the TO expression (for positive STEP values) or if the initial expression is less
than the TO Expression (for negative STEP values) the loop will not be executed
at all. The STEP keyword allows the programmer to define the size of the interval
incremented between loop iterations. Here is an example:

STATIC PUBLIC SUB Main()
DIM I AS Integer
DIM J AS Integer

J=1

FOR I = 1 TO 21 STEP 3
PRINT "LOOP iteration: " & J & ", I is equal to: " & I
INC J

NEXT
PRINT "J IS: " & J & " and I is: " & I

END

This code results in the following output:

LOOP iteration:
LOOP iteration:
LOOP iteration: is equal to: 7

LOOP iteration: 4 is equal to: 10

I is equal to: 1
I
I
I
LOOP iteration: 5, I is equal to: 13
I
I
2

is equal to: 4

wWN =

N N N N

LOOP iteration: 6, is equal to: 16
LOOP iteration: 7, is equal to: 19
J IS: 8 and I is: 2

Note that once the value of J exceeds the test of 21 in the loop, the loop
stops and code flow moves past the NEXT statement. The value of J-remains
unchanged when exiting the loop. Experiment with the code above, changing the
STEP value from 3 to 1, for example. Try to modify the FOR statement like this:

FOR I = 21 to 1 STEP -1

Gambas also provides a FOR EACH looping structure that allows you to
iterate through the values of a collection, array, enumerable classes, etc., without
the need to maintain an integer counter. We will fully cover the details of FOR
EACH when we discuss collections later in this book. At this point in your
introduction to Gambas, you are encouraged to play around with the code in the

50

A Beginner's Guide to Gambas

examples and change variable values, practice using the PRINT statement, etc.
Get to know the console and you will quickly learn it is a great tool to- test
expressions, code segments, etc. Do not be afraid to experiment with Gambas!
The very worst thing that can happen is your program blows up and you have to
restart your computer — unlikely, but indeed possible. Play around -and get
comfortable with Gambas. It is the best way to learn.

DO [WHILE] LOOP

The DO [WHILE] LOOP structure begins execution of a loop that will not
end until a condition is met or code within the loop structure forces an exit. The
code executed in the loop is delimited by the keywords DO and LOOP. If the
optional keyword WHILE is not specified, the loop would execute forever (an
infinite loop) or until some condition within the loop structure forced an- exit.~If
the optional keyword WHILE is specified, the loop is stopped once the evaluated
result of the expression becomes FALSE. In other words, while the results of this
expression are TRUE, continue to iterate (do) the loop. If the expression is FALSE
when the loop is started, the loop will not be executed at all. Here is the fermat
of the DO LOOP:

DO [WHILE Expression]

LoopP

The following code example should help you better understand how to use the
DO ... WHILE LOOP:

STATIC PUBLIC SUB Main()
DIM a AS Integer
a=1

DO WHILE a <= 5
IF a = 1 THEN
PRINT "Hello World, looping " & a & " time."
ELSE
PRINT "Hello World, looping " & a & " times."
ENDIF
INC a
LooP
DEC a
PRINT
PRINT "Goodbye World, I looped a total of:" & a & " times."
END

51

A Beginner's Guide to Gambas

The console prints the following:
Hello World, looping 1 time.

Hello World, looping 2 times.
Hello World, looping 3 times.
Hello World, looping 4 times.
Hello World, looping 5 times.

Goodbye World, I looped a total of: 5 times.

WHILE [Expression] WEND Loops

This loop structure begins a loop delimited by the WHILE ... WEND
instructions. The loop is repeated while Expression is TRUE. If, on initial entry, the
expression is FALSE, the loop is never executed. The DO WHILE LOOP and
WHILE ... WEND structures are equivalent. Try this code:

STATIC PUBLIC SUB Main()
DIM a AS Integer
a=1

WHILE a <= 5
IF a = 1 THEN
PRINT "Hello World, WHILE...WEND looping " & a & " time.”
ELSE
PRINT "Hello World, WHILE...WEND looping " & a & " times."
ENDIF
INC a
WEND
DEC a
PRINT
PRINT "Goodbye, WHILE...WEND looped a total of: " & a & " times."
END

The console should print the following:

time.

times.
times.
times.
times.

Hello World, WHILE...WEND looping
Hello World, WHILE...WEND looping
Hello World, WHILE...WEND looping
Hello World, WHILE...WEND looping
Hello World, WHILE...WEND looping

Uk wWwbh e

Goodbye, WHILE...WEND looped a total of: 5 times.

52

A Beginner's Guide to Gambas
The REPEAT UNTIL loop

This loop structure begins to execute code that is delimited by the
keywords REPEAT and UNTIL. A repeat loop will always execute at least once,
even if the UNTIL value is initially FALSE. Here is a sample to try on the console:

STATIC PUBLIC SUB Main()
DIM a AS Integer
a=1

REPEAT
IF a = 1 THEN
PRINT "Hello World, REPEAT UNTIL looping " & a & " time."
ELSE
PRINT "Hello World, REPEAT UNTIL looping " & a & " times."
ENDIF
INC a
UNTIL a > 5
DEC a
PRINT
PRINT "Goodbye, REPEAT UNTIL looped a total of: " & a & " times."
END

The console should print the following:

time.

times.
times.
times.
times.

Hello World, REPEAT UNTIL looping
Hello World, REPEAT UNTIL looping
Hello World, REPEAT UNTIL looping
Hello World, REPEAT UNTIL looping
Hello World, REPEAT UNTIL looping

U W=

Goodbye, REPEAT UNTIL looped a total of: 5 times.

Defining and Using Arrays in Gambas

There are two kinds of arrays that can be used in Gambas. The first type of
Gambas array works like arrays used in the Java programming language. The
other type of array that is used in Gambas is known as a Native array.~ When
using Java-like arrays, you must remember that the arrays are objects of the
following classes: Integer[], String[], Object[], Date[], and Variant[]. All of these
types of Java-like arrays can have only one dimension. You declare them like
this:

DIM MyArray AS NEW Integer|]

53

A Beginner's Guide to Gambas

Arrays are always initialized as void at startup. They are dynamic, and
have a lot of useful methods applying to them. When using single-dimension
arrays, these are the right choice. Native arrays on the other hand can support
multidimensional implementations or arrays with arrays objects of the following
classes: Integer, String, Object, Date, and Variant. They are declared like this:

DIM MyArray[Diml, Dim2, ...] AS Integer
DIM MyArray[Diml, Dim2, ...] AS String
DIM MyArray[Diml, Dim2, ...] AS Variant

Native arrays can have up to eight dimensions. They are NOT-objects.
They are allocated on the stack if you declare them local to a function. They are
allocated inside the object data if you declare them as global in scope.. Native
arrays are NOT dynamic. They can't grow or shrink once they are declared. You
can only only set or get data from an element in these types of arrays. Here.is an
example of using a three-dimensional native array in Gambas. In this example,
the array is filled with integer values ranging from O to 26. Enter this code in
your console code window:

STATIC PUBLIC SUB Main()
DIM i AS Integer

DIM ii AS Integer

DIM iii AS Integer

DIM narMatrix[3, 3, 3] AS Integer
FOR i = 0 TO 2

FOR ii = 0 TO 2
FOR iii = 0 TO 2

PRINT i, ii , iii & " ==> ";
narMatrix[i, ii, iii] = i*9 + ii*3 + iii
PRINT narMatrix[i, ii, iii]
NEXT
NEXT
NEXT
END

When you execute this code, your output in the console window should be similar
to what is shown here:

000==>0
001 > 1
2 21 ==> 25
2 2 2 ==> 26

54

A Beginner's Guide to Gambas

Collections

Collections are groups of objects implemented with a hash table.
Collection objects use keys that are implemented as string data-types. The data
values corresponding to any collection key is a Variant data-type. Objects-in-a
collection are enumerable. NULL is used when nothing is associated with a given
key. Consequently, associating NULL with a key has the same effect as removing
it from the collection. The size of the internal hash table grows dynamically as
data is inserted. This class is created using this general format:

DIM hCollection AS Collection
hCollection = NEW Collection ([Mode AS Integer])

Note the word EACH after the FOR statement. The FOR EACH construct is
discussed next. Also, we will go into much greater detail about collections laterin
this book when we talk about object-oriented programming. We will develop -an
application that makes extensive use of collections. For now, just note that
collection elements are enumerated in the order in which they were inserted. into
the collection. However, if you replace the value of an already inserted key, the
original insertion order is kept.

The FOR EACH Statement

The FOR EACH statement executes a loop while simultaneously
enumerating an object. The Expression must be a reference to an enumerable
object such as a collection or an array. The order of enumeration in not
necessarily predictable. The general format of the statement is:

FOR EACH Expression ... NEXT
FOR EACH Variable IN Expression ... NEXT

This syntax must be used when Expression is an enumerable object that"is
not a container. For example, an object returned as the result of a database
query. The statements above create a new collection object. Enter the following
code into your console code window and run it.

STATIC PUBLIC SUB Main()

DIM MyDict AS NEW Collection
DIM strElement AS String

MyDict["absolute"] = 3

55

A Beginner's Guide to Gambas

MyDict["basic"] =1
MyDict["carpet"] = 2

FOR EACH strElement IN MyDict
PRINT strElement & " " ;

NEXT

END

Your console should display this output:

312

At this point, you should be getting a pretty good feel for the syntax and
structure of Gambas. We are going to move away from console-based (terminal)
applications and return to our first project to begin exploring the Gambas ToolBox
and learn how to develop a GUI-based program. It is time to take a break and
when you come back to the next chapter, you will be refreshed and ready to code.
Ah, heck. If you just cannot wait to jump in, go ahead and turn the page!

56

A Beginner's Guide to Gambas

Chapter 4 — Introducing the Gambas
ToolBox

The default Gambas ToolBox consists of many controls. As of this writing
using release (1.0.9), the following controls are currently supported:

Button

Label
TextLabel
TextBox
TextArea
CheckBox
ComboBox
ListBox
RadioButton
ToggleButton
Frame

Panel
TabStrip
ProgressBar
Image

Timer

Dial

SpinBox
ScrollBar
Slider
LCDNumber
ListView
TreeView
IconView
GridView
ColumnView
ScrollView
DrawingArea
GambasEditor
TableView
Workspace

T N 1T 98 T S R S R R R R 8 R 8 X R 8~ X x ~x < x

As you can see, there is a wide selection of tools for you to play with in

57

A Beginner's Guide to Gambas

Gambas. Our introduction to the tools (which are also called controls) will teach
you about what each control does, what properties, methods, and events-you can
use to direct the behavior of the interface you are building, and how to code the
control to make it work exactly as you desire. Along the way, we will be building
several simple projects to get you more experienced in using the Gambas IDE. All
of the controls in the ToolBox are built-in using the gb.qt component. - This
component implements the Graphical User Interface classes. It is based on the QT
library. Here is a list of the various functionality the gb.qt component provides:

Clipboard

Containers

Drag and Drop

Drawing

Fonts

IconView

Keyboard and Mouse

Menus

ListView, TreeView and ColumnView
Printing

R R X X R R " R

We will cover other components later in this book. At the top of Figure 15,
you see the word Form displayed. This is the default toolkit for the -gb.qt
component. For now, let's take a quick look at the ToolBox again and review the
icons therein.

Toolbox @@@

Farm

A A abc @ B [ox] v

1 Gamb I
| wza

ool @ B r
Clomes @ D
[{=LoT| Al | Gemb |

a |

Figure 15- The Gambas ToolBox.

58

A Beginner's Guide to Gambas
From the top left of Figure 1, the controls in the ToolBox (Row 1) are:

Select

Label
TextLabel
PictureBox
ProgressBar
Button
CheckBox

R R R R |

On the second row you will find:

RadioButton
ToggleButton
ToolButton
TextBox
ComboBox
TextArea
ListBox

R R R R |

On the third row we have:

ListView
TreeView
IconView
GridView
ColumnView
HBox

VBox

R R R R | "

The fourth row of controls display:

HPanel
VPanel
Frame

Panel
TabStrip
ScrollView
DrawingArea
Timer

R R R R " R

59

A Beginner's Guide to Gambas

At the bottom of the ToolBox window, the word QT is seen. If you click on
that, you will see the controls specific to the QT user interface appear, similar to
Figure 2 below:

Figure 16- Additional controls for QT.

The QT-Specific Controls found on the top row of Figure 2 are:

Selector
LCDNumber
Dial
SpinBox
ScrollBar
Slider
MovieBox

R R R R | *

The second row of controls include these tools:

v TableView
v HSplit

v VSplit

v Workspace
v TextView

The general approach to programming Gambas is to design the layout of
your forms, place the controls that make up your interface to the user on the
form, determine and handle the various events that can occur with each control
using a combination of built-in Gambas methods and your own code, and direct
the operations of the program using input/output data. If it sounds simple, it is

60

A Beginner's Guide to Gambas

because once you understand the mechanics of it all, it is simple. Once you get
used to programming event-driven applications in Gambas, it will become second
nature to you.

The first group of controls we are going to learn about are text-oriented-in
nature and serve to either display or gather text data or to generate an event that
you can write code for, such as pushing a button. These controls are:

Button
Label
TextLabel
TextBox
InputBox
TextArea

R X X = |

The Button Control

This class object inherits its attributes from the Control class, as do all the
controls in the Gambas ToolBox. Using this control implements a push button on
a form. A push button can display text, a picture, or both. You have the ability to
set one button inside a window to be the Default button. Then, when the user
presses the RETURN key, it will activate that button automatically. Also, you can
set one button inside a window to be the Cancel button. Pressing the ESC key
will activate the Cancel button automatically. This class is creatable, meaning
that you can write code to dynamically generate a button on a form at run-time.
To declare a button object, the format below is used:

DIM hButton AS Button
hButton = NEW Button (Parent AS Container)

The Container, in most cases, will be the form where you place the button.
It could be any container object, however. This code will create a new push
button control. Note the variable name is preceded by the lowercase letter h.
This is a standard convention programmers use to refer to the handle (handles are
really references to something) of an object. Since Gambas supports object-
oriented programming, we will gradually introduce OO (Object-Oriented) concepts
to you as we encounter them. OO will be covered in much greater detail in
Chapter 11 of this book. Generally, objects are created from a class by assigning a
copy of the object to a variable, in this case hButton. This process, known as
instantiating an object occurs when hButton is assigned a value using the NEW

61

A Beginner's Guide to Gambas

keyword. What the line below means is hButton will be instantiated as a NEW
Button object and Parent is the property (read only) that will read a-method
(think of methods as functions that set or get a value) that is implemented inside
the Container class. The Container class is used because it is the parent class of
every control that can contain other controls. Now, this line of code should make
perfect sense to you:

hButton = NEW Button (Parent AS Container)

Common Control Properties

Button properties are attributes that you can set or read using the property
window or by using code in your program. For example, the line of code below
will set the Text property of a button:

hButton.Text = “OK”

Note the format of the statement above. Control.Property = Expression is
the standard convention used for setting or getting attribute information from a
control. Many of the properties for controls are common among all controls, so
we will take the time now to explain all of the button properties here. Later in the
book, we will only explain the properties that are unique to a given control when
we encounter them.

BackColor is defined as PROPERTY BackColor AS Integer

This integer value represents the color used for the control background. It
is synonymous with the Background property. Note that PROPERTY..is a
predefined data-type used internally in Gambas. You can use the Gambas
predefined constants for color to set common color values:

Black Blue Cyan DarkBlue
DarkCyan DarkGray DarkGreen DarkMagenta
DarkRed DarkYellow Default Gray

Green LightGray Magenta Orange

Pink Red Transparent Violet
White Yellow

To set the BackColor property for hButton to red, you would use this code:

hButton.BackColor = Color.Red

62

A Beginner's Guide to Gambas

Alternatively, if you know the RGB (red, green, blue) or HSV (hue,
saturation, value) values for a specific color, Gambas provides a means to-convert
those values to an integer value that can be passed on to the BackColor (or-ot