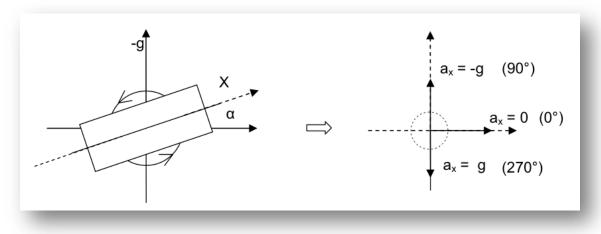


Summary

 Ideal Inclinometer: calculation of sensitivity mg / ° for an accelerometer (single axis, two-axis and three-axis)

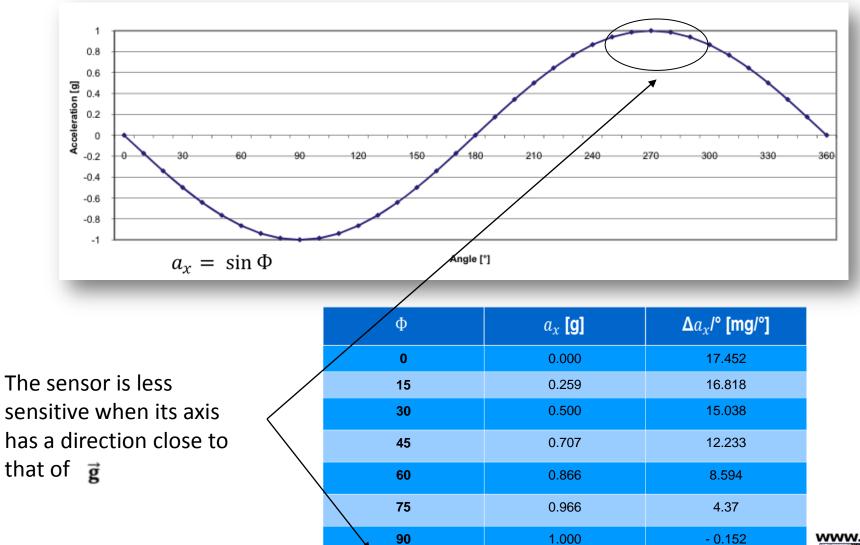

• Real Inclinometer: key parameters to be considered in order to evaluate sensitivity and accuracy in measuring the inclination

Single axis sensing

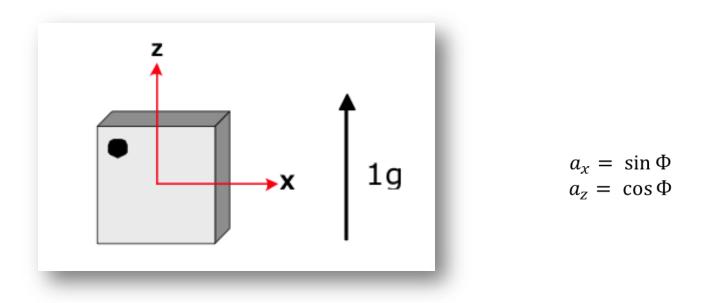
The X axis detects an acceleration equal to :

 $a_x = \sin \Phi$

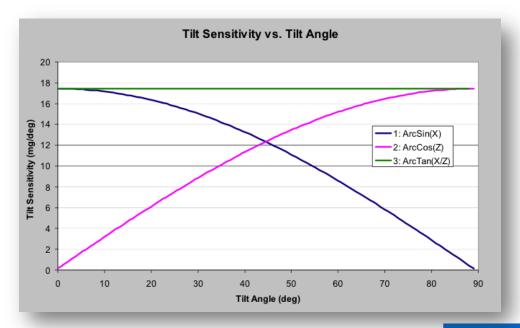
An accelerometer with sensing on a single axis does not allow to:


- Having a capacity of sensing constant to the variation of Φ: a_x/^e that depends on the function sin Φ
- does not distinguish between angles Φ and (180 Φ)

Single axis sensing

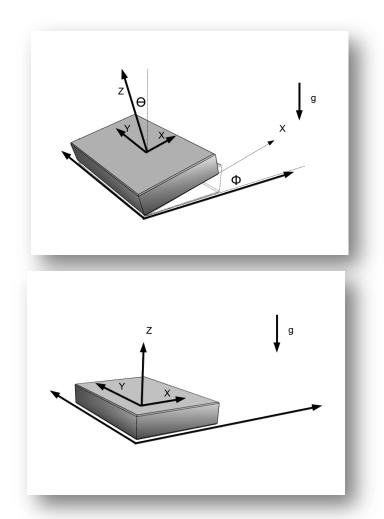


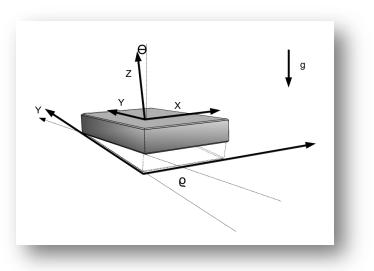
Two axes sensing



The use of two axes, one parallel and one perpendicular to \vec{g} allows to have a constant sensing ϕ angle (on the plane x -z). This allows you to uniquely distinguish all the angle degrees.

Φ *a_x* [g] $\Delta a_x l^{\circ}$ a_z [g] $\Delta a_z l^{\circ}$ [mg/°] [mg/°] 0 0.000 17,452 1 -0.152 15 0.259 16.818 0.966 -4.664 0.500 15.038 0.866 -8.858 30 45 0.707 12.233 -12.448 0.707 60 0.866 8.594 0.500 -15.19 75 0.966 4.37 0.259 -16.897 0.000 90 1.000 0.152 -17.452




Two axes sensing

With the use of two axes x and z get a tilt sensing constant independent of the angle of rotation of approximately **17,45 mg / °**

Three axis sensing

The reasoning can be extended on the axis y - z:

$$\Phi = \arctan\left(\frac{Ax1}{\sqrt{(Ay_1)^2 + (Az_1)^2}}\right)$$
$$\varrho = \arctan\left(\frac{Ax1}{\sqrt{(Ax_1)^2 + (Az_1)^2}}\right)$$

Accelerometer: key parameters

ODR (output data rate): typical value 100Hz **BW** (bandwidth of the signal to be measured): typical ODR/2 or ODR/4 **FS** (full scale range): for example $\pm 2g$ **SO** (sensitivity): expressed in *mg/LSB*, indicates the variation of *mg* which must have to obtain a variation of one LSB

Resolution at: $\mathbf{1} \sigma \Rightarrow A_n \cdot \sqrt{BW}$

The parameter 1σ corresponds statistically to (68.2% of samples), you should consider the value 3σ (99.7% of samples)

Accelerometer: key parameters

LIS331DLH: calculation resolution (a 30)

ODR = 50 Hz BW = 25 Hz (ODR/2)

 $3 \cdot A_n \cdot \sqrt{BW} = 3,27 mg$

The accelerometer, taking into account the noise input, has a resolution of 3.27 mg.

Therefore, the resolution expressed in degrees will be:

 $\frac{3,27 \ mg}{17,45 \ mg/^{\circ}} = 0,187^{\circ}$

Symbol	Parameter	Test conditions	Min.	Typ. ⁽²⁾	Max.	Unit
FS	Measurement range ⁽³⁾	FS bit set to 00		±2.0		g
		FS bit set to 01		±4.0		
		FS bit set to 11		±8.0		
So	Sensitivity	FS bit set to 00 12 bit representation	0.9	1	1.1	m <i>g</i> /digit
		FS bit set to 01 12 bit representation	1.8	2	2.2	
		FS bit set to 11 12 bit representation	3.5	3.9	4.3	
TCSo	Sensitivity change vs temperature	FS bit set to 00		±0.01		%/°C
TyOff	Typical zero- g level offset accuracy ^{(4),(5)}	FS bit set to 00		±20		mg
TCOff	Zero- <i>g</i> level change vs temperature	Max delta from 25 °C		±0.1		m <i>g</i> /°C
An	Acceleration noise density	FS bit set to 00		218		µ <i>g</i> / √Hz
Vst	Self-test output change ^{(6),(7),(8)}	FS bit set to 00 X axis	120	300	550	LSb
		FS bit set to 00 Y axis	120	300	550	LSb
		FS bit set to 00 Z axis	140	350	750	LSb
Тор	Operating temperature range		-40		+85	°C
Wh	Product weight			20		mgram

