

Application Guidelines for LIS3DSH State Machine

June 24 2013

AMS Application Team

Agenda 2

Educational part: What is state machine? Applications of state machine

State Machine of LIS3DSH

Development of State programs: Unico GUI SW, Examples

Documentation & Support Tools

What is state machine 3

- State Machine (SM) is a set of defined states, with inputs, outputs and transitions between states.
- The machine is in only one state at a time; the state it is in at any given time is called the current state.
- It can change from one state to another when a triggering event or condition occurs, this is called a transition.

Applications of State Machine

- State Machine replaces functionalities of current devices
 - Wake up/Free fall
 - 6D orientations
 - Tap/Double Tap (similar to click and double-click action with mouse)
- Thanks to its flexibility many new applications can be addressed
 - Motion controlled user interface
 - Gaming and virtual reality
 - Pedometer
 - Intelligent power saving for handheld devices
 - Impact recognition and logging
 - Vibration monitoring and compensation

LIS3DSH 5

- 3-Axis Digital SPI/I2C Accelerometer
- 5 selectable Full Scales: ±2, 4, 6, 8, 16g
- 2 programmable embedded finite-state machines for interrupt generation
- Very High Resolution (up to 14 bit) and low noise (150µg/sqrt(Hz))
- Low power consumption: 11µA in Active mode (3.1Hz) and 2µA in Power down mode
- Anti-aliasing filter
- P2Pcompatible with LIS3DH

Pricing: 0.93usd for 10K AMS Application RtM 22/07/2013

LIS3D<u>S</u>H – 3-axis Accelerometer with <u>S</u>tate Machine

LIS3DSH Features

- 3- Axis Digital Output (I2C/SPI)
- Full Scales from ±2g up to ±16g
- ♦ Very low noise (150 µg/√Hz, 14-bit accuracy)
- 2 independent Smart State machines
 Construction

Key Advantages

- Low current consumption system due to state machine: gesture detection is managed by LIS3DSH while MCU stays in sleep mode
- Flexibility to run different gesture detection algorithms

Accelerometers - Portfolio

LIS3DSH - 3-Axis Digital Accelerometer with Smart State Machine:

For latest updates pleas visit our website : www.st.com/

Life, augmented

Detailed Summary

APPLICATION

- Accelerometer with Smart State Machine to run dedicated motion detection patterns
- Motion controlled user interface
- Mobile platform power consumption reduction

KEY FEATURES

- Wide supply voltage, 1.7V to 3.6V
- Independent IOs supply (1.8 V) and supply voltage compatible
- Ultra low-power consumption down to 11 µA
- ±2g/±4g/±6g//±8g//±16g selectable full scale
- Low noise 150 ug/√Hz, 14bit resolution
- 16-bit data output, embedded FIFO
- 2 Programmable Embedded State Machine to run selectable motion detection patterns, Free-fall detection, Motion detection, Tap&Double-tap detection etc
- 2 independent programmable interrupts
- Ultra high stability over temperature
- I2C/SPI digital output interface
- Embedded self-test
- Package : LGA 3x3x1mm (same as LIS3DH)

PRODUCT STATUS

- In production
- Samples: available
- Evaluation board: available

State Machine of LIS3DSH

State-machines are identical with some exceptions:

- State Program #2 has decimator functionality
- State Program #2 has DIFF functionality

www.emcu.it

State Machines Overview 11

- LIS3DSH has **two** independently configurable State Machines (SM)
- Each SM has up to 16 states
- SM can run once or can be continuously running (looping)
- SM1 and SM2 can run independently or synchronized but with same input data
- SM1 is performed first
- Input data are 8-bit wide

ife, quamen

AMS Application RtM 22/07/2013

Data processing blocks of State Machine 13

• LSB cutter - 8-bit input data to State Machine are generated by dividing sensor output data by 256:

8 bit data = 16 bit data / 256.

• **Decimator** - reduces the sample rate of the data going to SM 2

 $ODR_SM2 = ODR / (DES + 1)$

where DES is user-programmable register

- **DIFF calculation** can be applied on input data of SM 2, there are two options:
 - 1. diff2 difference between current data (X, Y, Z) and previous data.
 - 2. cs difference between current data (X, Y, Z) and Constant Shift registers CS_X, CS_Y and CS_Z.

- Vector (v) is 8-bit number which represents amplitude of acceleration applied on the sensor.
- It is 8-bit signed number calculated by State Machine by an approximation formula.
- Acceleration vector amplitude is only available inside the two State Machines, but cannot be read outside.
- Vector can be filtered by 7th order anti-symetric FIR filter

 $Xv_{filt} = (x0-x7) \operatorname{coeff0} + (x1-x6) \operatorname{coeff1} + (x2-x5) \operatorname{coeff2} + (x3-x4) \operatorname{coeff3}$

• Coefficients coeff0 to coeff3 are user-programmable.

State Machine Process 15

 Each state is configured through the Operation Codes (OPCODE). OPCODES can be divided in two groups:

NEXT/RESET Conditions

- NEXT/RESET conditions control operation flow of the state machine
- RESET condition is in MSB part and NEXT condition is in LSB part of the OPCODE

COMMANDS

- Commands have special tasks for flow control, output and synchronization
- Commands and their parameters are executed as one step command.

NEXT/RESET Conditions 16

- RESET condition is evaluated first, NEXT condition is evaluated only if RESET was not valid
- Transition to next state happens when "NEXT condition" is valid
- Transition to reset point happens when "RESET condition" is valid
- If both conditions are not valid, the same conditions are applied to the next sample
- Examples of conditions
 - TI1 Timer 1 (16-bit value) valid
 - GNTH1 Any/triggered axis greater than THRS1
 - LLTH2 All axis less than or equal to THRS2
 - NZERO Any axis zero crossed

- COMMANDS have special tasks for flow control, output and synchronization
- There are three types of COMMANDS, depending on execution timing:
 - Immediately executed: commands executed without waiting for a new sample
 - Executed after trigger: wait for an internal (a new sample) or external trigger (reading of the OUTSx SMx status register) to proceed
 - Special commands (JMP commands): special conditions comparison for conditional jump commands.

• Examples of COMMANDS

- CONT Continues execution from RESET POINT, also generates interrupt
- SETS1 sets content of SETT1 register SM1 control register
- STHR2 sets new value of Threshold 2 register
- SRADI1 enables DIFF calculation of SM2

State Machines Synchronization 18

- Sequential synchronization is possible using SSYNC command
 - Each state machine has 16 states that can be combined up to 32 sequential states
 - State machine B can act as sub-function for State machine A (parameters can be totally different than main program)
 - State Program A can toggle execution to State Program B and vice versa
- Host can change inactive State Program when other State Program is running

State Machine Overview 19

State Machine Parameters 20

- 4 independent Timers
- 2 independent Masks (x, y, z, v)
- 3 independent acceleration **Thresholds** @8bit (Signed, Unsigned)

Peak Detection function

- Detects and stores the highest peak value during peak detection phase
- Peak detection uses always "Greater than" condition and measured value is converted to absolute
- This function allow to follow the axes that reach the absolute maximum value and not only first axis that trigger initial condition

Peak Detection Example 21

Development of State programs 22

Unico SW GUI

Debugging state programs

Examples of State programs

AMS Application RtM 22/07/2013

Features

- User friedly and fast getting started with MEMS sensors
- Common interface to all kinds of ST MEMS sensors
 - accelerometers, gyroscopes, magnetic sensors and pressure sensors
 - Compatible with new sensors from ST
- MEMS data displayed in several views
- Access to all settings of each sensor
- Examples of usaging ST sensors
- Data from sensors can be stored on hard drive for further analysis

Unico

User Interface for MEMS Demonstration Kits

AMS Application RtM 22/07/2013

State Machine in Unico 24

State Machine button

	Select C	:074:	0011	-	10.6	• * E		OR	B IL 1	90 II	0	. 48				
	State Machine #1								State Machine #2						State Machine	
	50	10+401	OPC	O DM	BNTH	t 🗙 Til	*	0x 51	50 (0	850)	O OPC	🕘 CIMD	STOP	×	0x 00	
	51	10+411	OPC		GNTH	t 🗸 Til	*	0x 51	51 (0	w51)	O OPC	CMD	STOP	4	0x 00	Manage State Machine functions
	52	[0:42]	@ 0PC		NOP	GNT	-12 -	0x 06	52 10	w521	O OPC	🕑 СМР	STOP	×	Πκ 00	Bead
	53	(0:43)	⊙ 0PC	O DM	113	V LNTH	12 🐱	0x 38	53 (0	x53]	O OPC	CMD	STOP	~	0x 00	
	54	[0:44]	O DPC	O DM	NOP	🗸 T14	*	Oc 04	54 (0	w541	O OPC	CIND 💿	STOP	~	11× 00	White
	55	(0=45)	. OPC	O DM	GTTH	1 🗸 TII	*	04 91	S5 (0	w55)	O OPC	CMD	STOP	~	0x 00	Visuelize
	56	(0:46)	I OFC	O DM	112	GNT	-12 🐱	Ox 26	56 (0	w66)	O OPC	CMD	STOP	~	Dx 00	Examples
	\$7	(Be47)	O DPC	0.04	113	- LNTH	2	0: 39	S7 (0	MG7)	O OPC	CMD	STOP	*	0x 00	Open and charge State Machine
	59	(0+48)	@ DPC	O DH	NOP	V T14	~	0: 04	S8 (0	w68)	O OPC	O CMD	STOP	×	0x 00	
ŭ.	\$9	[0:49]	OPC		GTTH1	1 - TH	-	0x 91	S9 (0	x69)	O OPC	CMD	STOP	~	DK 00	[STM Ex] Double Tap.um
Z	\$10	(D:4A)	O OPC		DONT		~	08 11	S10 (0	NGA)	O OPC	CMD	STOP	~	0 = 00	Load
MACHINE	\$11	(0:49)	O OPC	 ВМ 	STOP		¥	0: 00	S11 (0	w68)	O OPC	O CMD	STOP	~	0x 00	Save as Example
MA	512	(0:4C)	O OPC		STOP		~	08.00	S12 10	w6C)	O OPC	CMD	STOP	*	0x 00	Patien
		3.000M	O OPC		C. Lininese		*	0. 00	10120122	seren.	O OPC		STOP		0× 00	Load Data patterm
SIAIE			O OPC		10			0x 00	-		O OPC		STOP	×	0x 00	[STM-PT]Es2upd
5			O OPC		Party party			0. 00			O OPC		STOP	×	0x 00	Load

Read, Write and Visualize the current state machine

Load or Save State Machine Configuration

Load Data Pattern to test the State Machine

Each state can be programmed selecting either the code or through the interface

Unico – Debug mode DISABLED 25

Actual device's configuration (FS, ODR)

1	Debug MODE Enable/Disabl	
C Vigual State Machine Desite Devlausion FullState - 2g	DEBUG MUDE SETUI Dualed	
Data Hate = 122 Hz State Hackma #1 Toro 1 = 907 no Tane 2 = 4000 no Tane 2 = 4000 no Tane 2 = 80 no Tane 4 = 180 no Tane 4 = 180 no Tane 4 = 180 no Tane 4 = 180 no Tane 4 = 0 n	STATE MACRIME #1 STATE	State Machine Flow
Zam+ Dul Zoon-	42g - 41g - 9g - -2g -	Loaded Data Pattern Waveform /Info

NOTE: State machines parameters are reported with Unit of Measurement indicated: their values are related to both corresponding registers value and device's FS/ODR in use.

Unico – Debug mode DISABLED 26

of each sample just clicking on it

life.augmented

Unico – Debug mode ENABLED 27

NOTE 1: Units of Measurement are meaningless when Debug mode is Enabled; State machines parameters are related only to registers' values.

NOTE 2: Boldfaced parameters are REAL TIME updated.

State Machine Programs

- 1. Toggle
- 2. Wake Up
- 3. Free Fall
- 4. Double Tap
- 5. SSYNC

Toggle 29

AMS Application RtM 22/07/2013

Free Fall 31

-160 -

Double Tap 32

AMS Application RtM 22/07/2013

SSYNC 33

Documentation & Support Tools 34

Datasheet, Application Note

Evaluation Boards

PC Graphical User Interface

Technical Support

• ST MEMS products website

- LIS3DSH datasheet
- <u>Application Note AN3393</u> LIS3DSH: 3-axis digital output accelerometer

AN3393 Application note

LIS3DSH: 3-axis digital output accelerometer

Introduction

This document is intended to provide information on the use of and application hints related to ST's LIS3DSH 3-axial digital accelerometer.

The LIS3DSH is an ultra low-power high performance 3-axis linear accelerometer belonging to the "nano" family.

It has dynamically user selectable full scales of $\pm 2g/\pm 4g/\pm 6g/\pm 8g/\pm 16g$ and is capable of measuring accelerations with output data rates from 3.125 Hz to 1.6 kHz.

The self-test capability allows the user to check the functioning of the sensor in the final application.

The LIS3DSH has an integrated first in, first out (FIFO) buffer allowing the user to store data for host processor intervention reduction.

The device can be configured to generate interrupt signals activated by user defined motion patterns. To do this, two embedded Finite State Machines can be programmed independently for motion detection. Each State Machine has 16 states.

The LIS3DSH is available in small thin plastic land grid array package (LGA), and it is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Documentation 35

LIS3DSH

MEMS digital output motion sensor ultra low-power high performance three-axis "nano" accelerometer Prelimar data

Features

- Wide supply voltage, 1.71 V to 3.6 V
 Independent IOs supply (1.8 V) and supply
- voltage compatible Ultra low-power consumption
- ±2g'±4g'±6g'±8g/±16g dynamically selectable full-scale
- I²C/SPI digital output interface
- 16-bit data output
- Programmable embedded state machines
- Embedded temperature sensor
- Embedded self-test
- Embedded FIFO
- 10000 g high shock survivability
- ECOPACK[®] RoHS and "Green" compliant

Applications

- Motion controlled user interface
- Gaming and virtual reality
- Pedometer
- Intelligent power saving for handheld devices
- Display orientation
- Click/double click recognition
 Impact recognition and logging
- Vibration monitoring and compensation

LGA-16 (3x3x1 mm) of measuring accelerations with output data rates from 3.125 Hz to 1.6 kHz.

The self-test capability allows the user to check the functioning of the sensor in the final application.

The device can be configured to generate interrupt signals activated by user defined motion patterns.

The LIS3DSH has an integrated first in, first out (FIFO) buffer allowing the user to store data for host processor intervention reduction.

The LIS3DSH is available in a small thin plastic land grid array package (LGA) and it is guaranteed to operate over an extended temperature range from -40 $^\circ$ C to +85 $^\circ$ C.

Table 1. Device summary

Order codes	Temperature range ["C]	Package	Packaging	
LIS3DSH	-40 to +85	LGA-16	Tray	
LIS3DSHTR	-40 to +85	LGA-16	Tape and reel	

Pedometer Based on State Machine 36

- Embedded 15bit step counter
- No pedometer firmware on Microcontroller
- Microcontroller can read pedometer in polling
- Automatic interrupt generation on stop walking sequence
- Automatic interrupt generation on every step
- Ultra Low Power consumption
- Strong anti-false detection

Available upon request

Evaluation boards 37

Daughter board available:

LIS3DSH STEVAL-MKI134V1

STM32-based MEMS motherboard compatible with ST MEMS adapters

STEVAL-MKI109V2

- Firmware upgrades are possible via DFU
- Source codes available including low level drivers for STM32

Note: **Schematics** and **Gerber** files are available under evaluation boards webpages in internet

Unico Evaluation Software 38

- Unico is Graphical User Interface (GUI) for PC (Windows based)
- Designated to be used with STEVAL-MKI109V2 and any MEMS adapter board
- Connection
 - USB
 - Bluetooth with STEVAL-MKI132V1

Analog, MEMS & Sensors (AMS) Application Support Team

... is providing technical application support for customers, designing in ST Analog, MEMS & Sensors products, in projects agreed with local EMEA ST sales office / Technical marketing team

- Solving
 - Product and Application problems answering detailed technical questions
- Providing
 - Design consulting (Schematic, PCB and Software)
 - Technical Trainings

... and RF IPD/IPAD RF Baluns

Contact email: <u>AMS-support-EMEA@st.com</u>

Web site: www.st.com/mems

- AMS-support-EMEA@st.com
 - Your technical support
- Petr STUKJUNGER
 - AMS Technical support Engineer EMEA
- Vladimir JANOUSEK

Gildas.HENRIET@st.com

AMS Technical support Manager EMEA

For more information

