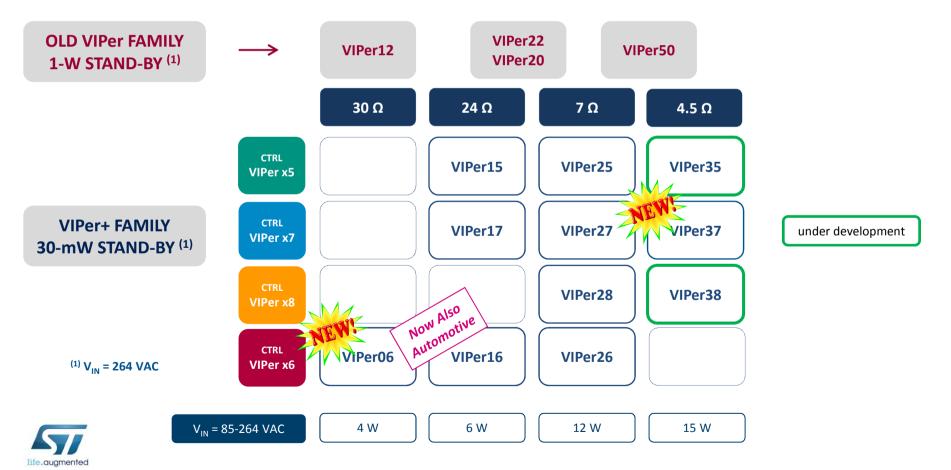
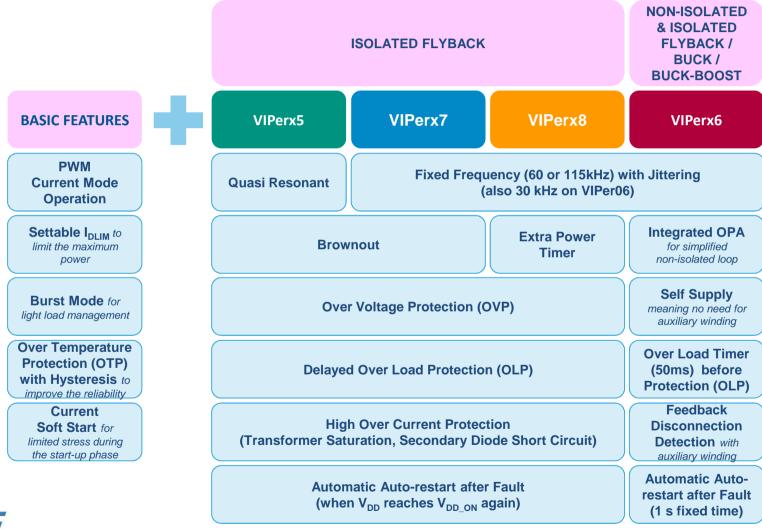


Agenda

Power Conversion & Lighting


- VIPer+ Family Extension: VIPer06, VIPer37, VIPerA16
- New Resonant Controller: L6699
- DC-DC Converters: ST1S40/1, ST1S31/2
- HVLED Family Extension: HVLED815PF
- DC-DC LED Drivers: LED2000
- Motor Control & Factory Automation
 - dSPIN & easySPIN
 - IOLink Master: L6360
- Discretes
 - LED Bypass: LBP01 Family
 - SiC Diodes 2nd Generation
 - SuperMESH 5



Refresh on VIPer+ Family: Portfolio

- VIPerxy:
 - x identifies the size of the Power MOS (hence, the Power Range)
 - y identifies the kind of Controller (hence, the Features)

VIPer+ Family: Features 5

VIPer+: Family Extension

• VIPer06

- Up to 4 W
- Replacement of capacitive power supplies

• VIPer37

- Up to 15 W
- VIPerA16
 - Automotive Grade version of VIPer16
 - Born for Hybrid & Electric Vehicles
 - Suitable for StreetLighting (-40 °C)

VIPer06: Positioning

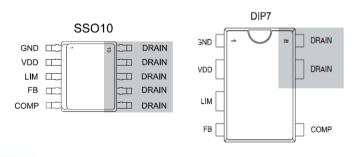
Auxiliary AC-DC power supplies up to 4W for

- White goods
- Small appliances and power tools
- E-meters
- Industrial (Home/Building Automation, Motor control...)

800V avalanche-rugged integrated MOSFET and low standby

Operating frequencies for different needs 30kHz for VIPer06Xx 60kHz for VIPer06Lx 115kHz for VIPer06Hx

now available also on eDesignSuite !!! www.st.com/edesignsuite



Why VIPer06 8

		EA	TURES TO BENEFITS
Col V	IPer Family	•	Market benchmark
	800V avalanche rugged MOSFET	•	Application cost reduction
	mmon to all	•	Superior reliability
V	Internal R _{SENSE} for Current Sensing	•	No Need of External R _{SENSE} Lower Dissipation
	Small internal MOSFET	•	Cost-effective replacement of capacitive power supplies (SMPS in refrigerators, dimmers, home automation)
	Available op-amp	•	Versatile solution for both isolated / not isolated topologies
4	Multiple switching frequencies (also 30 kHz)	•	Noise-free solution for applications where PLM communication is used (e-meters)
life.c	Jugmented		

VIPer06: Product Description

- <u>800-V</u> avalanche rugged power MOSFET
- PWM controller with drain current limit I_{Dlim}
- Adjustable current limit, I_{Dlim}
- Fixed frequency with <u>Jittering</u>
- High performance for stand-by & efficiency
- No need of auxiliary winding
- Automatic auto restart after faults
- Hysteretic thermal shutdown
- Direct feedback for non isolated SMPS
- Open loop protection

MAIN PARAMETERS	Power MOSFET (SuperMESH)	CONTROLLER (BCD6S)
Break down voltage [V]	800	
R _{DSon} [Ohm] (resp Viper 06 / 16 / 26)	32	
V _{DD} [V]		9 ÷ 23
F _{osc} [KHz]		30 / 60 / 115
Max I _{Dlim} [mA]		400
R _{THJ-A} [° C/W]		80
P _{OUT} [W] @ 85-265 V _{AC}		4

• GND

controller ground / power MOSFET Source

• VDD

controller supply voltage / I_{CHARGE} output current

• LIM

Current limit set-up, I_{Dlim}

• FB

direct voltage feedback (in case of non isolated SMPS or for primary regulation)

COMP

Compensation network.

Current loop feedback in case of isolated SMPS

VIPer06: Tools and Support 10

- Datasheet
- Available at **eDesignSuite**
- Spreadsheet under Development
- Evaluations Boards:

VIPer 37	Order code	Topology	Input VAC	Output	Output	Relevant AN	Reference
VIPER06LS	STEVAL-ISA096V1 Available	Buck-boost	85-265	1W	-12V	UM1470	Small appliances, Industrial
VIPER06HS	V06HS4W-12VFN Available\	Non-Isolated Fly-back	85-265	4W	12V	N.A.	Appliances
VIPER06HN	V06HN4W-12VFN Available	Non-Isolated Fly-back	85-265	4W	12V	N.A.	Appliances
VIPER06XS	V06XS1W-5VB Coming Soon	Buck	85-265	1W	5V	N.A.	Small appliances, Industrial
VIPER06LS	V06LS2W-12VB Coming Soon	Buck	85-265	2W	12V	N.A.	Small appliances, Industrial

...and other coming soon

VIPer06 benchmark

Device	Mosfet BV [V]	Rds(on) [Ω]	Max pk current [mA]	Device consumption (uA)	Fsw [kHz]	Output Accuracy [%]	Тороі	Package
<u>Viper06</u>	800	32	350	1300	30, 60, 115	5	Flyback Buck BuckBoost	Dip7, SS010
LNK623	700	28	400	520	100	5	Flyback	Dip7, SO8
LNK304	700	28	275	260	66	8	Buck BuckBoost	Dip7, SO8
LNK305	700	14	401	280	66	8	Buck BuckBoost	Dip7, SO8
LNK56x	700	55	136	260	66, 83, 100	10	Flyback	Dip7, SO8
NCP1011	700	35	250	950	65, 100, 130	N.A.	Flyback	Dip7, SOT223

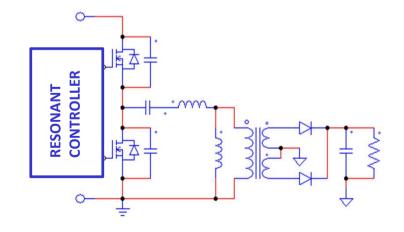
These devices are often in competition

Comparison (green cells) done only on parameters where the benchmark is fair ("apple-by-apple")

VIPer37: Tools and Support

Datasheet

- Available on *eDesignSuite*
- Spreadsheet under Development
- Evaluations Boards:


VIPer 37	Order code	Topology	Input VAC	Output	Output	Relevant AN	Reference
VIPER37LE	EVLVIP37L-5V3A Coming soon	Isolated Fly-back	85-265	15W	5V / 3A	AN4007 draft	ATX, USB charger
VIPER37LE	Under development	Isolated Fly-back	230±15%	15W	12V / 1.7A	N.A.	Consumer, Industrial
VIPER37HE	Under development	Isolated Fly-back	85-265	15W	12V / 0.75A 5V / 1.2A	N.A.	Consumer, Industrial

L6699: Concept 14

- L6699 is a HV controller for LLC resonant topologies for power levels starting from around 50/60W
- Suitable for AC-DC SMPS (with or w/o upfront PFC stage) requiring:
 - High efficiency, at full load as well as at lighter load levels
 - Low standby without an auxiliary stage
- Application Examples:
 - SMPS for LV Motors
 - SMPS for LED Lighting
 - General Industrial SMPS

AC-DC SMPS: Resonant Topology 15

- High efficiency @ full load but
 - Low efficiency @ light load
 - More external components required → Suitable for high power applications (typically in combination with PFC)
- High efficiency is obtained if Soft Switching occurs (ZVS operation)
- Hard Switching may occur:
 - In case of not proper application circuit design at High Load (Capacitive Mode)
 - → DANGEROUS
 - At Light Load
 - \rightarrow LOW EFFICIENCY

At Start-up

L6699 vs. L6599A 16

Self Adjustable Dead Time

- Dead Time is Longer at Light Load
 - \rightarrow IMPROVED EFFICIENCY AT LIGHT LOAD

Anti-capacitive Mode

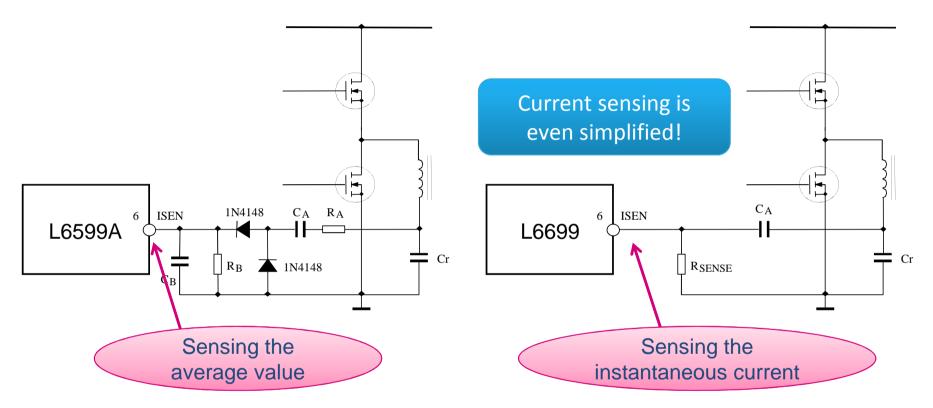
• Rugged Protection that avoids Hard Switching even in case of Not Proper Application Circuit Design

 \rightarrow HIGHER RELIABILITY

Extra Smooth Start-up

• Enhanced Soft-Start (in addition to the traditional Frequency-Shift Soft-Start) that avoids Hard Switching at Start-up

 \rightarrow HIGHER RELIABILITY


L6699 vs. L6599A

Feature	L6699	L6599A
Anti-capacitive protection*	YES	NO
Smooth Start-up*	YES	NO
Dead-time*	Self adjusting between 200ns and 700ns	Internally fixed at 350ns (typ)
Over Current Protection	Autorestart or Latch-mode	Latch-mode
Soft burst-mode*	YES	NO
MAX Quiescent Current (I _{Q_MAX})	1.3 mA	2.5 mA
Suggested Max F _{sw}	300 kHz	> 500 kHz

L6699 Additional Features	Benefits
Self-adjustable Dead Time	Improved Efficiency even at Light Load Optimized Transformer Design
Anti-capacitive Protection	Higher System Reliability
Extra-smooth Startup	Higher System Reliability
Soft Burst Mode	No Audible Noise at Light Load

L6699 vs. L6599A: Anti-Capacitive Protection

- IC checks that tank current is lagging behind applied voltage (positive phase-shift)
- Pushes frequency up if phase-shift gets too close to zero
- Stops switching for 50 µs and then soft-restarts if phase-shift suddenly becomes negative
- During this idle period the PFC_STOP pin is pulled low to stop the PFC stage as well.

Pin-to-Pin Compatible with L6599A

L6699 vs. Competition 19

L6699 includes all Advanced Functionalities

[PARTS	L6599A	L6699	Comp1	Comp2	Comp3
		Source/Sink Drive Capability	-300/800mA	-300/800mA	-78/107mA	-0.5/1A	-300/480mA
		Adjustable Dead Time	No	0.23~0.7uS	0.5~2.45uS	100nS~2uS	Yes/0.63uS Typ.
		Start-up Current (max)	250uA	300uA	1.2mA	300uA	310uA
		Burst Mode Operation	Yes	Yes	Yes	No	No
		Interface with PFC	Yes	Yes	No	Yes	No
		Internal Bootstrap Diode	Yes	Yes	No	No	Yes
		Operating Temperature (°C)	-40 ~ 150	-40 ~ 150	-20 ~ 85	-40 ~ 140	-25 ~ 70
		Delay for OLP	Yes	Yes	Yes	No	No
	PR	2 nd level OCP	Yes	Yes	No	No	No
	OTEC	Extra Latch protection function	Yes	Yes	No	Yes	Yes
	PROTECTIONS	ОТР	No	No	Yes (150° C~)	Yes (140° C~)	Yes (120° C~150 ° C)
		Brown-out function	Yes	Yes	Yes	Yes	No
life.augmented		PACKAGE	SO16/DIP16	SO16	DIP16	SO16	SO20

LEADING ROLE IN THE HIGH-END MARKET

L6699 vs. Competition 20

L6699 allows to:

- Approach Sockets where Light Load Management is Too Challenging for a Standard LLC Controller
- Remove the Auxiliary Flyback Stage, in Systems where it is used to Manage Stand-by

L6699: Key Messages 21

- High Efficiency at Light Load
- Improved System Reliability & Lifetime
- No Audible Noise at Light Load
- Demoboards
 - EVL6699-90WADP: 90W/19V SMPS with PFC L6563H
 - EVL6699-150W-SR: 150W/12V SMPS with PFC L6563H & Synchronous Rectification SRK2000
- L6699 design worksheet in progress

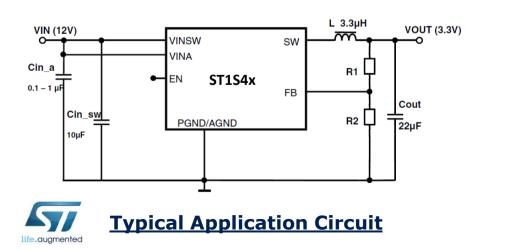


ST1S40 vs. ST1S10 23

As the ST1S10, the ST1S40 is a 18-V, 3-A Synchronous DC-DC, suitable for Consumer and General Industrial Applications

DIFFERENTIATION WITH RESPECT OF THE ST1S10

- Realized with a New / More Performing Technology
 - Performance / Price Optimization
 - Lower $R_{DS ON}$ (20/30% reduction) \rightarrow Lower Conduction Losses
- No Synchronization Capability
 - Switching Frequency: 850 kHz
- Available also in SO-8L Package
 - SO-8L, HSOP-8L, DFN4X4-8L



3-A and 4-A versions: ST1S40/1 24

- V_{IN}: 4 V 18 V
- $V_{OUT}: 0.8 V V_{IN}$
- I_{OUT}
 - 3 A (ST1S40)
 - 4 A (ST1S41)
- Synchronous Rectification
 - (HS: 95 mΩ; LS: 70 mΩ)

- Switching Frequency: 850 kHz
- Internal Compensation
- Enable
- Internal Soft Start
- Ceramic C_{OUT} allowed
- Over Current and Thermal Protections

Order Code	Package
ST1S40IDR	SO-8L
ST1S40IPHR	HSOP-8L
ST1S40IPUR	DFN4X4-8L
ST1S41IPHR	HSOP-8L
ST1S41IPUR	DFN4X4-8L

ST1S41: Positioning vs. Competition 25

Feature	ST1S41	COMP. 1	COMP. 1	COMP. 2	COMP. 3
Input Voltage (V)	4 to 18	4.5 to 18	4.5 to 18	4.5 to 21	4.5 to 21
Output current (A)	4	4	4	4	4
Synchronous	Yes	Yes	Yes	Yes	Yes
High Side MOS	95	63	70	120	120
Low Side MOS	69	55	53	40	20
FSW (kHz)	850	~ 700 (Constant ON Time)	~ 650 (Constant ON Time)	500	300 to 2000
lq SHDN/ OPER (A)	2u/ 1.5m	1.8u/ 0.85m	3u/ 0.95	1u/ 0.7m	< 10u/ 0.7m
Efficiency at Light Load (< 100 mA)	No	Yes	Yes	No	No
Package	QFN4x4-8L / HSOP-8L	HTSSOP-14L	DDA-8L (HSOP-8L)	HSOP-8L	HSOP-8L
N# ext components	6	8	8	8	8
Operating Temperature Range (°C)	From -40 to 125	From -40 to 85	From -40 to 85	From -40 to 125	From -20 to 85

ST1S40/1: Key Messages 26

<u>Compactness</u>

- Minimum Component Count
- Available also in DFN Package
- Wide Operating Temperature Range (-40 °C to 125 °C)

• Performance / Price

- Available also in SO Package (ST1S40) and HSOP Package (both ST1S40/1)
- Demoboards: Available for ST1S40...
 - STEVAL-ISA084V1 (STS40IDR)
 - STEVAL-ISA082V1 (STS40IPHR)
 - STEVAL-ISA083V1 (ST1S40IPUR)

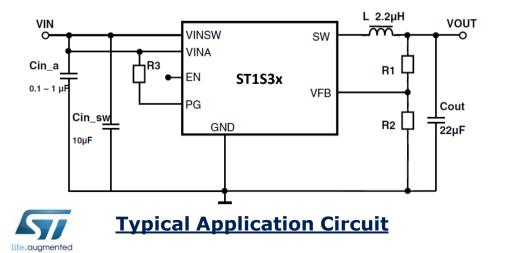
• Demoboards: Coming Soon for ST1S41

ST1S31 vs. ST1S30 28

<u>As the ST1S30, the ST1S31 is a 5.5-V, 3-A Synchronous DC-DC,</u> suitable for Consumer and General Industrial Applications

DIFFERENTIATION WITH RESPECT OF THE ST1S30

- Realized with a New / More Performing Technology
 - Performance / Price Optimization
 - Lower $R_{DS_{ON}}$ (~50% reduction) \rightarrow Lower Conduction Losses
- Power Good Pin Also
 - Sequencing Allowed
- Package
 - Smaller Package at Same Current


- (DFN3X3-8L instead of DFN4X4-8L)
- Available also in SO-8L

Device	LS R _{DS_ON} (mΩ)	HS R _{DS_ON} (mΩ)
ST1S30	100	100
ST1S31	45	60
Reduction	-55%	-40%

3-A and 4-A versions: ST1S31/2 29

- V_{IN}: 4 V 5.5 V
- V_{OUT} : 0.8 V V_{IN}
- I_{OUT}
 - 3 A (ST1S31)
 - 4 A (ST1S32)
- Synchronous Rectification
 - (HS: 60 mΩ; LS: 45 mΩ)

- Switching Frequency: **1.5 MHz**
- Internal Compensation
- Enable
- Internal Soft Start
- Ceramic C_{OUT} allowed
- Over Current and Thermal Protections

Order Code	Package
ST1S31DR	SO-8L
ST1S31PUR	DFN3X3-8L
ST1S32PUR	DFN4X4-8L

ST1S31/2: Positioning vs. Competition 30

Feature	ST1S31/2	COMP. 1	COMP. 2	COMP. 3
Input Voltage (V)	2.8 to 5.5	2.6 to 5.5	2.7 to 5.5	2.9 to 6
Output Current (A)	3/4	2	3	3
Synchronous Rectification	YES	YES	YES	YES
Switching Frequency (MHz)	1.5	1	1	1.1 Synchr. ±20%
HS R _{DS_ON} (mΩ)	60	142	60	19
LS R _{DS_ON} (mΩ)	45	56	N.A.	N.A.
I _Q (A)	220 μ	340 µ	630 µ	2.2 m
Package	DFN3x3-8L SO-8	WQFN3x3-16L	HSOP-8L	DFN4x4-8L
Power Good	YES	NO	NO	YES

ST1S31/2: Key Messages 31

<u>Compactness</u>

- Minimum Component Count
- Available also DFN Package (both ST1S31/2)
- Wide Operating Temperature Range (-40 °C to 125 °C)

• Performance / Price

- ST1S31 available also in SO Package
- Demoboards Available
 - STEVAL-ISA070V1 (STS31D-R)
 - STEVAL-ISA069V1 (STS31PUR)
 - STEVAL-ISA068V1 (ST1S32PUR)

A7985/6: Product Overview 33

KEY FEATURES

- V_{IN}: 4.5 V to **38 V**
- V_{OUT} : 0.6 V to V_{IN}
- I_{OUT}: **2/3 A DC**
- Adjustable F_{SW} : 250 kHz to 1 MHz \rightarrow
- Synchronization Capability with 180° Phase Shift
- P-channel MOS
- Internal Soft-start
- Ceramic C_{OUT} Allowed
- AEQ100 Qualification

PACKAGE: HSOP-8L

BENEFITS

High Flexibility

- High F_{SW}: Smaller Components
- Low F_{SW}: Lower Switching Losses
- → Easier to Filter Noise / Less Dissipation when 2 devices are supplied together
- → No Need for Bootstrap Capacitor
- \rightarrow No Inrush Currents
- \rightarrow Smaller/Cheaper/More Reliable C_{OUT}
- \rightarrow Suitable in Automotive Applications

A7985/6: Typical Applications 34

Dashboard

- µC / Digital Devices
- Warning Lights

Car Infotainment

- µC / Digital Devices
- Climate Control
- Audio

Gateway

A7985/6: Positioning in ST Portfolio for Automotive

35

Feature	A7985A/6A	L7986TA	A597x	B5973D	A6902D
AUTOMOTIVE QUALIFICATION	YES, AEQ100	NO, Temperature Testing Only *	YES, AEQ100	YES, AEQ100 + BURN IN **	YES, AEQ100
V _{IN} (V)	4.5 to 38	4.5 to 38	4.4 to 36	4.4 to 36	8 to 36
I _{оит} (А)	2/3	3	Up to 3	2	1
R _{DS_ON} (mΩ)	200	200	250	250	250
F _{sw} (kHz)	250 Adj. up to 1000	250 Adj. up to 1000	250	250	250
Soft Start	Internal	Internal	NO	NO	NO
Synchronization Capability	YES, 180° Phase Shift	YES, 180° Phase Shift	YES, no Phase Shift	YES, no Phase Shift	NO
Ceramic C _{out}	YES	YES	Not Recommended	Not Recommended	YES
EN / INH	YES, Enable	YES, Enable	YES, Inhibit	YES, Inhibit	NO
Package	HSOP-8L	HSOP-8L	HSOP-8L	HSOP-8L	SO-8L

** BURN IN in production

A7985/6: Key Messages 36

• New DC-DC for Automotive with:

- Improved Performance / Features
- Improved BOM (Less / Smaller / More Reliable External Components)
- Competitive Performance-Price Ratio
- Recommended for New Designs vs. A597x
- Demo-boards on Request

HVLED815PF

New Off-line LED Driver with PF Correction

for Isolated Lamp Retrofit

HVLED Family Extension

RtM, Q2 2012

Refresh on HVLED805... 38

- Offline LED Driver dual-chip:
 - 800-V Avalanche Rugged MOS
 - High Performance Controller
- Applications
 - Fixed-Light Lamp Retrofit for Power up to 5 W *
 - **5% Current ACCURACY**
 - No Opto-coupler & CC controller \rightarrow Low BOM
 - Internal 800-V MOSFET

 - Quasi-Resonant OM
 - Automatic Self Supply

3x500mA 2x700mA **Typical Application**

HVLED805

LED 4x350mA

OMP GND HED SOURC

- → State-of-the-Art LED Current Precision
- - \rightarrow High Reliability (Market Benchmark)
- Adjustable Over Voltage Protection \rightarrow Protection against LED String Open
 - \rightarrow High Efficiency
 - \rightarrow Operation with variable number of LEDs
 - EVALHVLED805: Up to 4.2 W, 350 mA ۲
 - STEVAL-ILL037V1: 3.2 W, 200 mA

*in wide V_{IN} range

...now up to 15 W and with PF Correction: HVLED815PF

All benefits of HVLED805 and...

- Extended Power Range (up to 15 W)
- Power Factor Correction Available
- First Results of **Dimmability with Triac-Dimmers**: already Available Boards in US V_{IN}

Power Factor > 0.9 ! ...compliant with

39

HVLED815PF: Key Messages 40

- Offline LED Driver with Extended Power Range
- Low BOM
 - No Opto-Coupler
 - No Current Controller
- Power Factor Correction
 - PF > 0.9 \rightarrow To Meet Present & Future Regulations
- First Results of Dimmability with Triac-Dimmers
- ...and the 7-W version to come: HVLED807PF

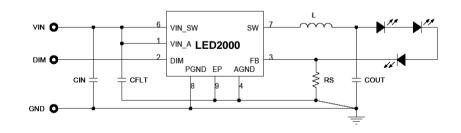
New 18-V Synchronous DC-DC LED DRIVER

With Superior Dimming Capability

RtM, Q2 2012

LED2000: Positioning vs. ST1CC40 42

<u>As the ST1CC40, the LED2000 is a 18-V DC-DC LED Driver for</u> <u>High-Brightness (HB) Lighting Applications (up to 3 A)</u>


- Common Features:
 - Very low sensing voltage for low dissipation: 100 mV
- Specific Features:
 - ST1CC40:
 - INHIBIT PIN: when Low Consumption at Stand-by is required
 - LED2000:
 - PWM PIN: when High Frequency Dimming is required
- Applications:

• Torches, Flash Lights, Home Appliances, General Lighting

LED2000: Product Overview 43

- V_{IN}: 4 V 18 V
- I_{OUT}: 3 A
- Sensing Voltage: 100 V
- PWM Dimming Capability
- Switching Frequency: 850 kHz
- Synchronous Rectification
 - (HS: 95 mΩ; LS: 70 mΩ)

- Internal Compensation
- Enable
- Internal Soft Start
- Ceramic C_{OUT} allowed
- Over Current and Thermal Protections
- Packages
 - SO-8L
 - DFN4x4-8L

Order Code	Package
LED2000PUR	DFN4X4-8L
LED2000DR	SO-8L

LED2000: Key Messages 44

Dedicated to LED Driving

- Very low Sensing Voltage for Low Dissipation
- PWM Dimming

• High Efficiency

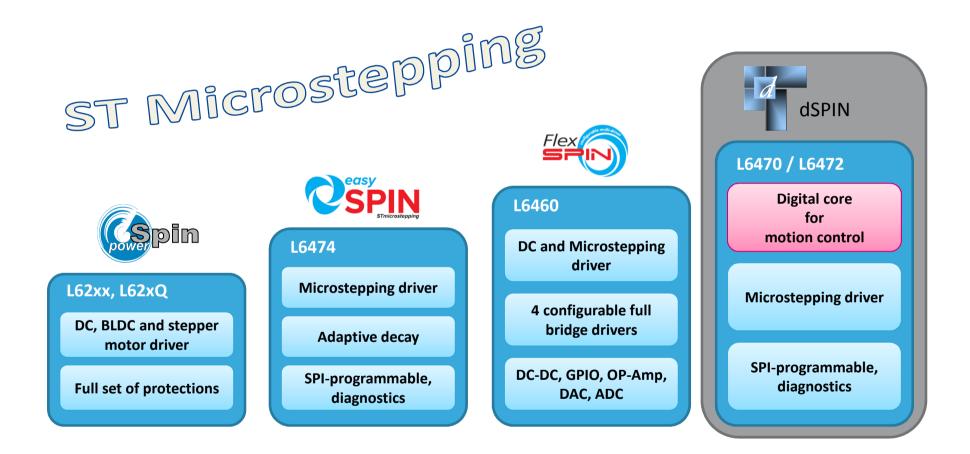
- Very low Sensing Voltage for Low Dissipation
- Low $R_{DS ON} \rightarrow$ Low Conduction Losses
- Synchronous Rectification

Compactness

- Minimum Component Count (Synchronous Rectification + Internal Compensation)
- Reduced External Components Dimensions (High F_{SW} + Ceramic C_{OUT} allowed)
- Available also in DFN Package

• Interesting Price

• Available also in SO Package


L6472 dSPIN & L6474 easySPIN

LV Motor Drivers for Microstepping xSpin Family Extension

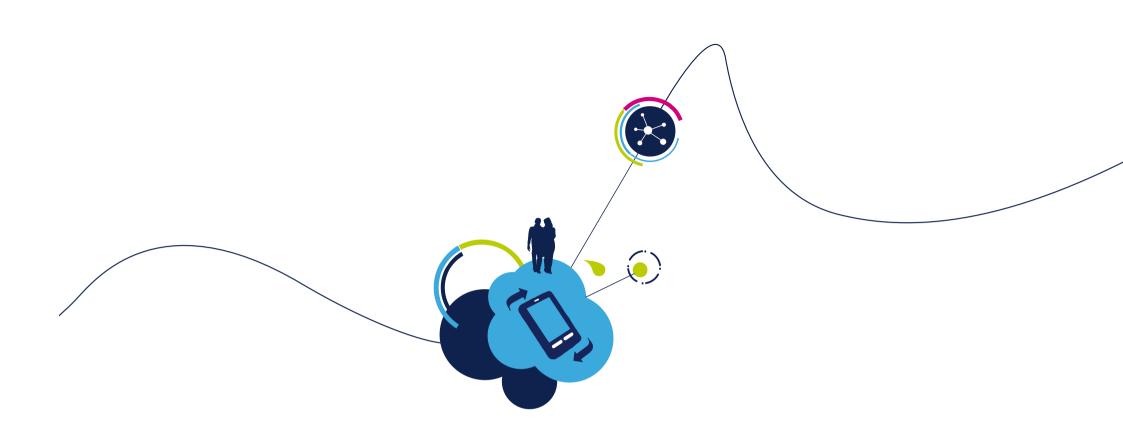
RtM, H1 2012

xSPIN Product Family Overview 46

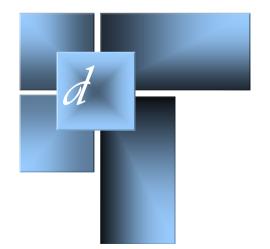
Performance and integration

Microstepping motors applications 47

- Microstepping motors allow precise angular positioning and show non-zero (holding) torque of the motor shaft when stationary
- Holding torque maintains desired position while under external load
- Wide applications area:
 - Industrial (NC machines, robotics, PCB assembly...)
 - Office/POS equipment (printers, ticket machines, bill counters, camera positioning...)
 - Medical (diagnostic equipment, pumps...)

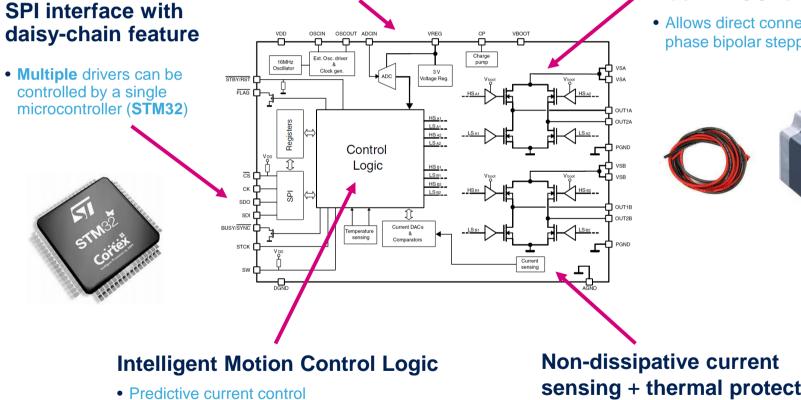


dSPIN & easySPIN: born for Stepper Motors


• dSPIN and easySPIN: dedicated to 2-phase Bipolar Stepper Motors

- 2 Full Bridges
- Complex Motion Control Unit
- SPI interface for easy configuration
- Rich Protection Features
- Already Mature
 - L6470: dDPIN Voltage Mode (128 µsteps)
- Now also
 - L6472: dDPIN Current Mode (16 µsteps)
 - L6470: easySPIN

L6472 dSPIN



L6472 dSPIN – Feature-Rich and Flexible microstepping motor driver

Integrated ADC

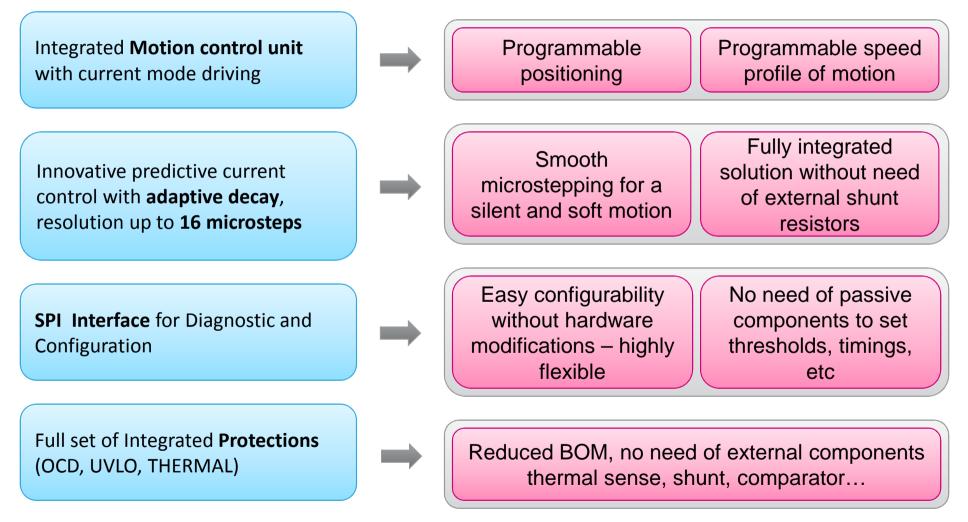
- Optional external torgue regulation or
- User-defined function

- **Dual DMOS full-bridge**
 - Allows direct connection of twophase bipolar stepper motor

 Phase current decay is automatically selected to

life.augmented

sensing + thermal protection


No need of external components

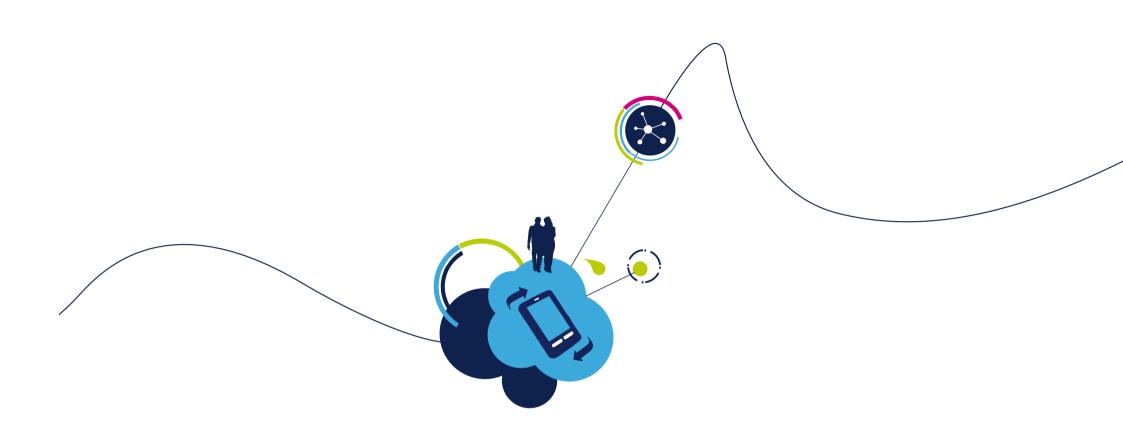
50

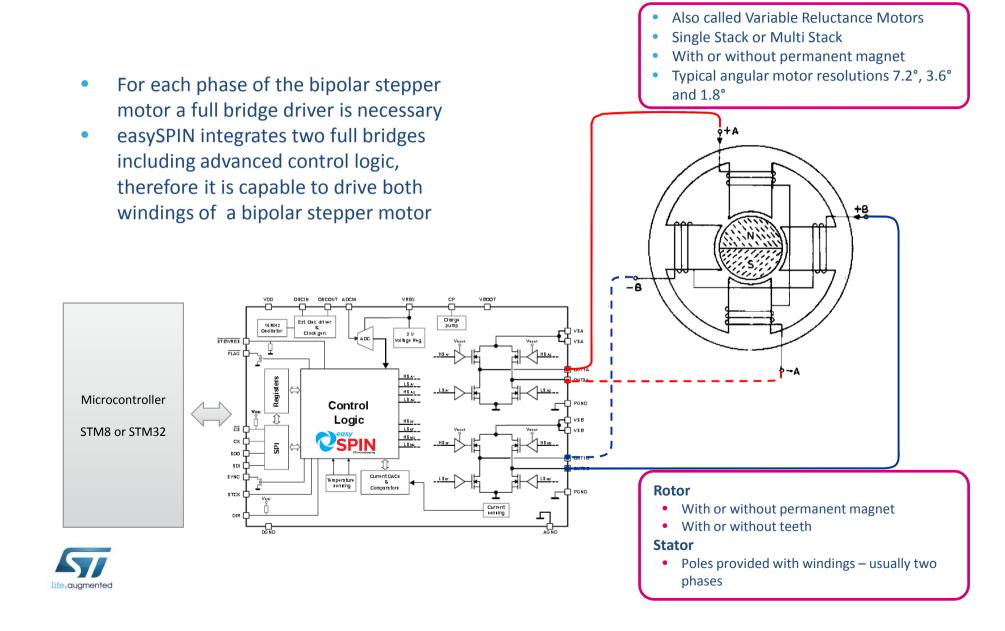
dSPIN - L6472

51

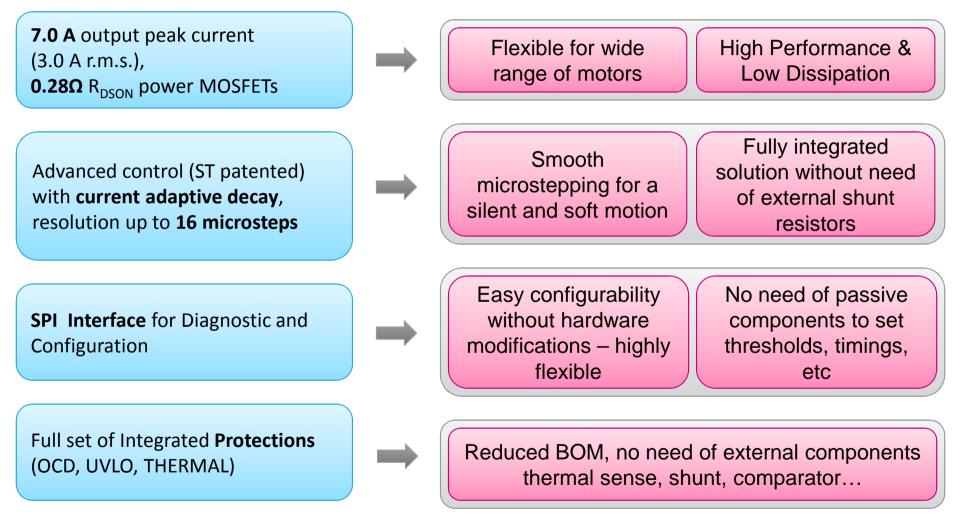
Flexible innovative microstepping motor driver

Ordering Information & Available Tools 52

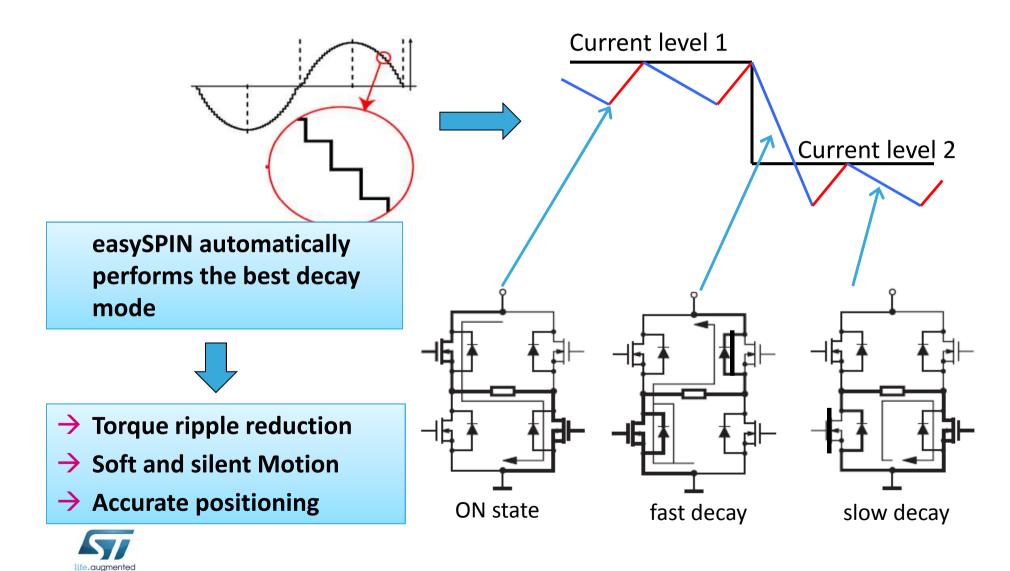

- Product page: www.st.com/dspin
- dSPIN order codes:
 - L6472H (TR) HTSSOP28, Tube (Tape and reel)
 - L6472PD (TR) POWERSO36, Tube (Tape and reel)
- *d*SPIN price information:
 - L6472 price ranges between the L6474 (easySPIN) and the L6470 (dSPIN Voltage Mode / 128usteps)
- Evaluation boards:
 - dSPIN evaluation board EVAL6472H
 - Communication board STEVAL-PCC009V2
- PC Application with Graphical User Interface



L6474 easySPIN


Basic Principle – Bipolar Stepper Motor

easySPIN - L6474


55

Flexible innovative microstepping motor driver

easySPIN L6474 - Adaptive decay control Unique advantage against competition

56

Ordering Information & Available Tools 57

- Product page: www.st.com/easyspin
- easySPIN order codes:
 - L6474H (TR) HTSSOP28, Tube (Tape and reel)
 - L6474PD (TR) POWERSO36, Tube (Tape and reel)
- easySPIN price information:

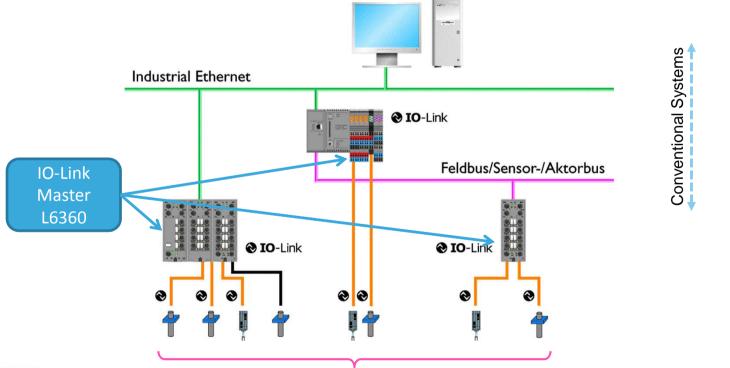
L6474PD

- L6474 price appears between the PowerSPIN (L6206/7) and the dSPIN L6472
- Evaluation boards:
 - easySPIN evaluation board EVAL6474H
 - Communication board STEVAL-PCC009V2
- PC Application with Graphical User Interface
- STM32 firmware library for *easySPIN*:
 - Helps to reduce programming effort and development time for **STM32** platform-based applications, all L6474 commands and register definitions implemented

L6360 IO-Link Master

IO-Link Master Physical Layer General Purpose Transceiver for Industrial Bus RtM, Q2 2012

IO-Link Communication 59


Sensor / Actuator

Communication

IO-Link →

Down to the

- Main reason to create IO-Link standard was to enable process data, configuration and diagnostics information exchange between sensors / actuators and control system
- It is a simple point to point communication topology, one Master communicates to one Slave (called Device in the IO-Link conventions)
- · IO-Link uses the same infrastructure like conventional sensors / actuators
- Systems are backward compatible means that IO-Link Master works also with non IO-Link Device and vice-versa

IO-Link can be used for Digital as well as Analog Sensors and Actuators

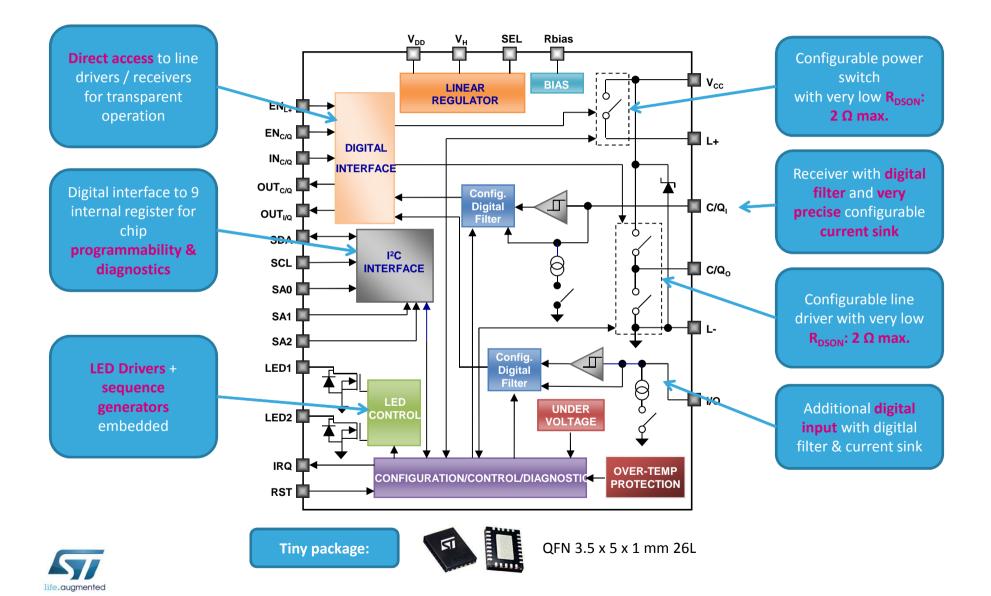
Applications to be covered by L6360 60

IO-Link

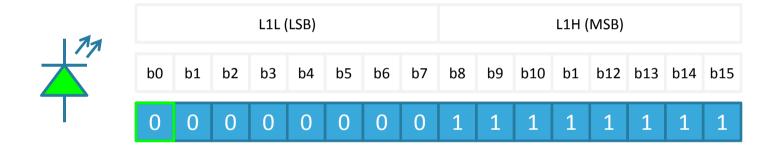
IO-Link Master PHY with outperforming features

- C/Qi: IO-Link Input compliant with embedded 5-6mA current sink (including digital filter)
- C/Qo: Configurable Push-Pull / HS/ LS power stage up to 500mA
- Integrated power switch for sensor supplying (L+), 500mA
- Standard I/O Mode compliant
- Tiny package: QFN 3.5 x 5 mm
- Usable for any (1 / 2 / 4 or 8) master port Master granulated applications

- L+ & C/Qo used as 500mA configurable High Side Drivers
- C/Qi, I/Q inputs used as Type 1 compliant digital inputs, 2-3mA current sink

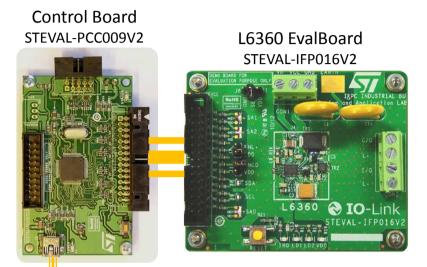

Line driver

- Single 24V line driver (& receiver) up to 500mA, speed capability >200kHz
- 5V/3.3V to 24V level shifter


Main Advantages Against Competition

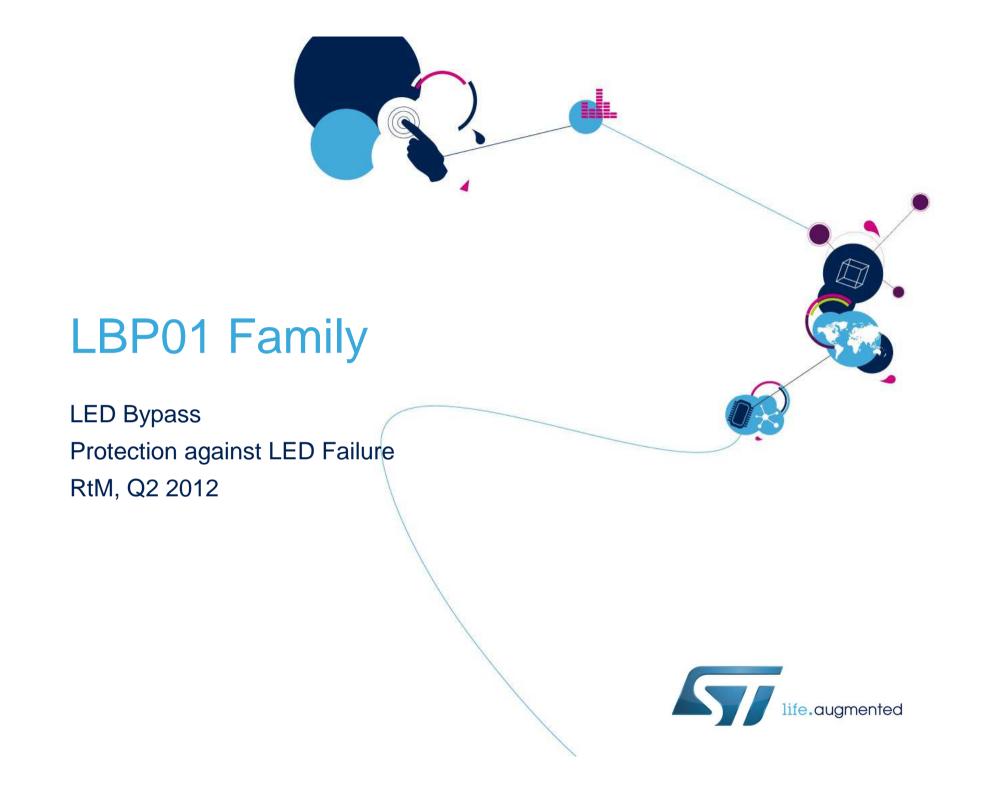
LED Sequence Generator & Driver

• Two indication LEDs sequence generator & driver embedded in the chip


- Flexible to generate any light sequence according to configuration
- Based on two 16-bit registers (one per LED channel)

177	L2L (LSB)						L2H (MSB)									
	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	b1	b12	b13	b14	b15
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

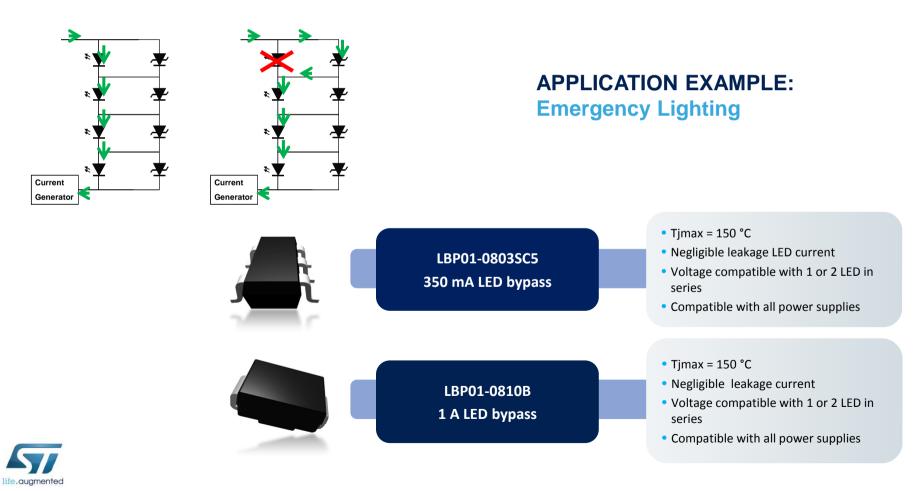
L6360 Ordering Information, Evaluation Tools


USB Interface to PC GUI Application available

- Part ordering code: L6360
- Price indication: approx. 12.5% less than VNI4140K
- Evaluation boards ordering codes
 - L6360 Evalboard: STEVAL-IFP016V2
 - Control board: STEVAL-PCC009V2 or STEVAL-PCC009V1
- Application Immunity verified
 - IEC61000-4-2, ESD, Contact / Air, both higher than ±8kV
 - IEC61000-4-4, Burst, > ±4kV, performance criteria A* (= internal registers stable)
 - IEC61000-4-5, Surge, 42Ω/0.5μF, > ±2.5kV CM / > ±1kV DM (common / differential modes)

PC Based Evaluation Software Interface

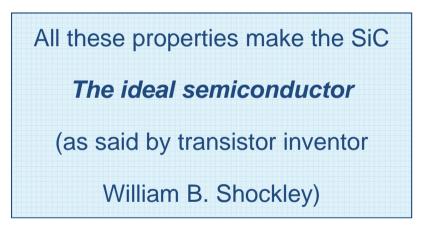
nk			×
onfiguration Register	Led Registe	·	
HS ON 🔽	💌 Bit O	Bit 0	
iontrol Register1 EN_CGQ Cut-off current Cut- DFF V 100 mA V 100	off delay time us v Bit 2 V Bit 2 V Bit 3 V Bit 4 V Bit 5	Bit 1 Bit 2 Bit 3 Bit 4 Bit 5	
Restart delay De-bounce Programmabl V 0 uS V	 ✓ Bit 6 ✓ Bit 7 ✓ Bit 8 ✓ Bit 9 ✓ Bit 10 	Bit 6 Bit 7 Bit 8 Bit 9 Bit 10	
· · · · · · · · · · · · · · · · · · ·	Cut-off L+ hable V Bit 12 Bit 12 Bit 13 Bit 14 Bit 15	Bit 11 Bit 12 Bit 13 Bit 13 Bit 14 Bit 15	
Delay_L+ Restart delay time I i00 us 🗸 64 us 🗸 0	De-bounce Select al	Select all	
	ОК	Cancel	
		-Link File Help	
		IO_Link Configuration Board ID Master Board Address L6360 number 0 Read Procedure Registers Address	Automatic Read OFF L6360 Setting Setting Write



LED Bypass: LBP01 Family 65

When Reliability is a Must...

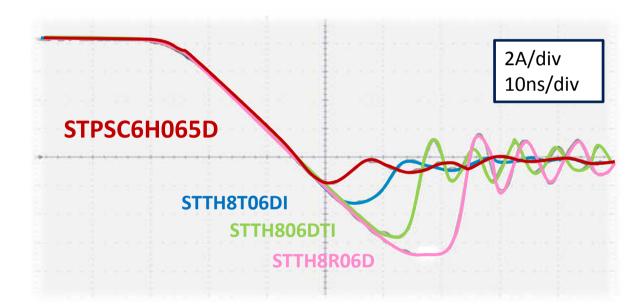
... LED failure is no more an issue



SiC vs. Si 67

• SiC main advantages vs Si:

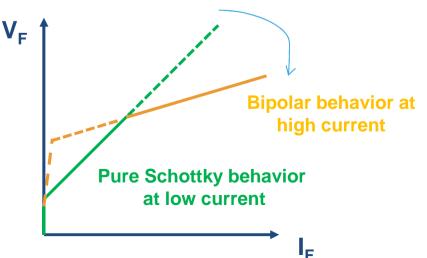
- About 10 times the max electric field of silicon
- Lower specific ON-resistance
- Faster switching times
- 3 times better thermal conductivity
- Higher temperature operation
- Applications
 - Solar Inverters
 - PFC boost diode in Telecom Server
 - Electrical Vehicule charging stations



68

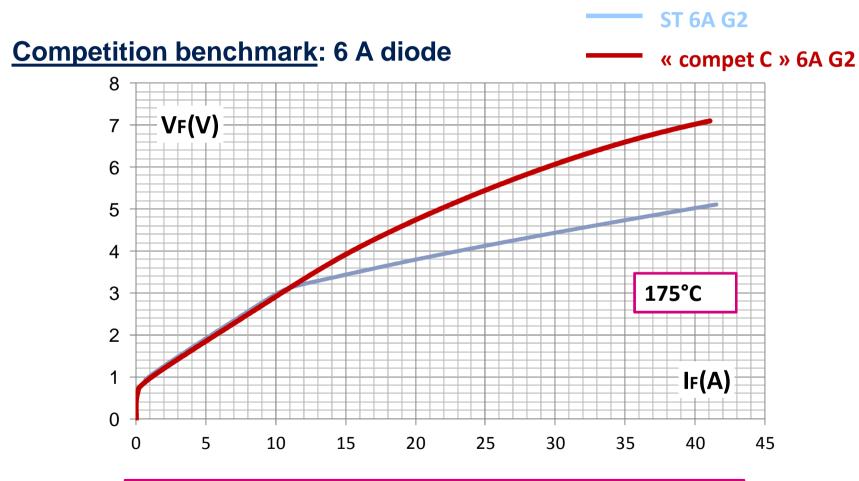
Recovery current is due to junction capacitance charge only (no minority carrier recombinations since SiC Schottkys are unipolar devices)

Negligible switching losses with SiC diodes → higher converter's efficiency



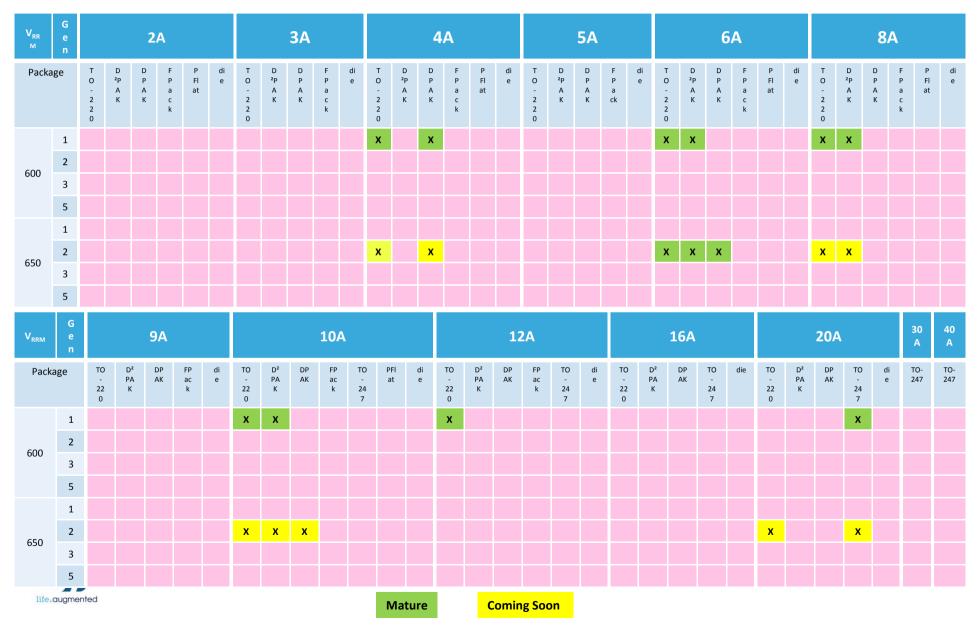
SiC Gen2: positioning versus existing portfolio

- Higher voltage ratings
 - 650 V vs. 600 V
- Higher surge current capability
 - by a factor 2x to 3x for all pulse shorter than 10ms
 - up to x10 times nominal current at 10ms


<u>JBS (Junction-Barrier</u> <u>Schottky) design</u> → increase the Surge forward current capability while keeping the temperature below the Tj max.

life.auamen

69


New 650V SiC G2 vs. Competition 70

Clamping effect more efficient for ST device \rightarrow lower temperature increase during forward stress conditions

SiC Diodes Portfolio (22 products) 71

SiC Diodes Gen 2: Key messages 72

- Generation2: upgraded to 650V (more V_R safety margin)
- JBS structure **improved IFSM** (current surge capability) vs. previous generation
- Lower Vf vs. JBS technologies competitor
- Temperature reduction \rightarrow Heat-sink size reduction
- Lower switching losses → F_{SW} increase, so lower magnetic component cost

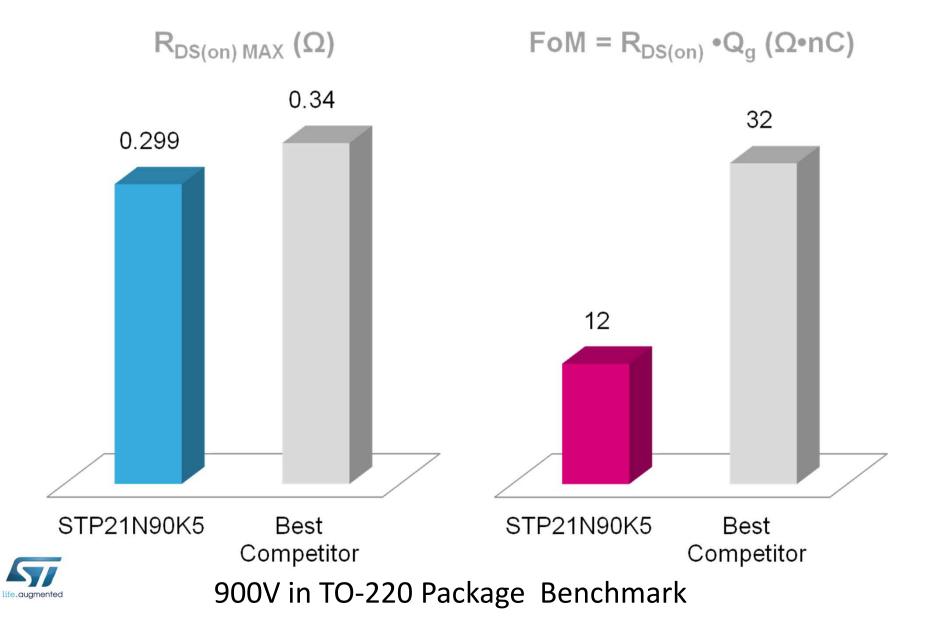
SuperMESH[™]5: Very High Voltage MOSFET revolution

Breakthrough in Very High Voltage

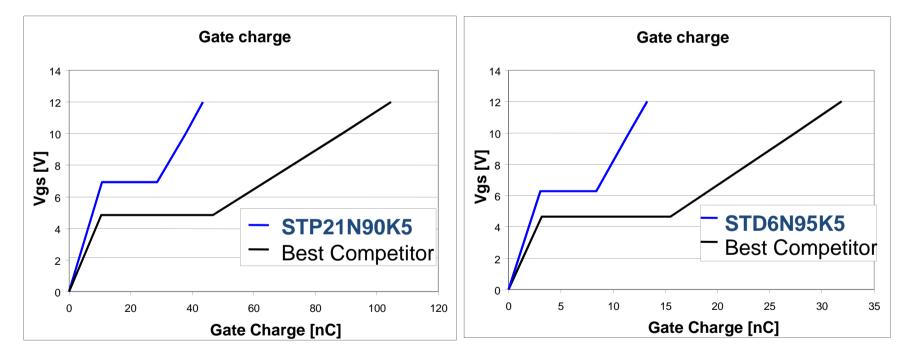
- 800V-1200V Voltage Range
- Designed for Best Efficiency
 - LED & HID Driving
 - High Input Voltage PV Inverter
 - 3-Phase PSU

NOW: first 900V & 950V K5 devices in Mass Production!

74


Main Features & Benefits

- Lowest R_{DS(on)} x area
- Lowest FOM (R_{DS(on)}*Q_g)
- Increased Safety Margin
- Lowest Power Losses
- Higher Energy Savings
- Faster Switching Speed



SuperMESHTM5: Best-in-Class 75

SuperMESHTM5: Best-in-Class 76

Minimized Gate Charge gives Superior Switching Performances turning into Higher Energy Savings inside the Application

STP21N90K5 vs best Competitor

STD6N95K5 vs best Competitor

SuperMESHTM5: Very High Voltage Series 77

V _{DS} [V]	P/N	R _{DS(on)} (max) [Ω]	Package	Status		
	STx7N80K5 1.2		TO-220/FP/DPAK / PowerFLAT 5x6 HV	Samples Q3 '12 Production Q4 '12		
800	STx8N80K5	0.95	TO-220/FP/I2PAKFP/DPAK/ PowerFLAT 5x6 HV	Samples Q3 '12 Production Q4 '12		
800	STx12N80K5	0.375	TO-220/FP/D2PAK /TO-247	Samples Q3 '12 Production Q4 '12		
	STx25N80K5	0.260	TO-220/TO-220FP/TO-247	Samples Q3 '12 Production Q4 '12		
850	STx23N85K5	0.275	PowerFLAT 8x8 HV /TO-247	Samples Available Production Q3 '12		
900	STx21N90K5	0.299	TO-220/TO-220FP/TO-247/D2PAK	Production		
950	STx6N95K5	1.25	DPAK/IPAK/TO-220/ TO-220FP/TO-247	Production		
	STx20N95K5	0.330	TO-220/TO-220FP/TO-247/D2PAK	Production		
1200	STx12N120K5	0.690	TO-220/TO-3PF/TO-247	Samples Q4 '12		

900V & 950V K5 devices now in Mass production and available in different packages

SuperMESHTM5: Key Messages 78

"Very High Voltage MOSFETs for the Highest Efficiency with the Lowest Power Losses meant for Emerging Applications"

•Lighting

- LED driving and HID High Powers, Outdoor
- Photo Voltaic Inverter
 - µ-inverter
 - Boost Converter
- <u>SMPS</u>
 - LED/LCD TV
 - 3-phase input AC/DC converter
 - Welding
 - HEV charger station

