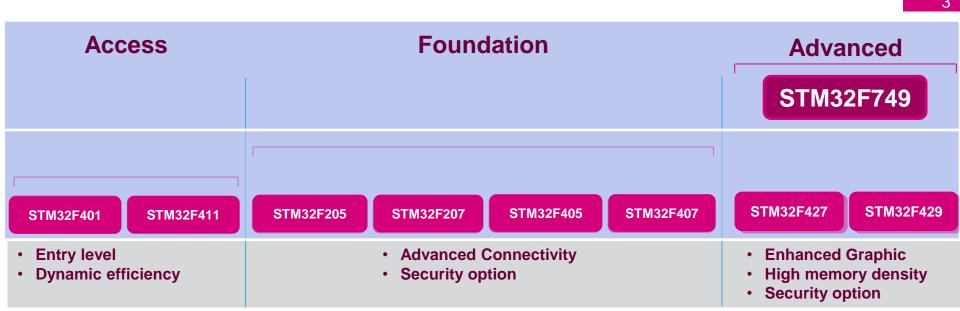
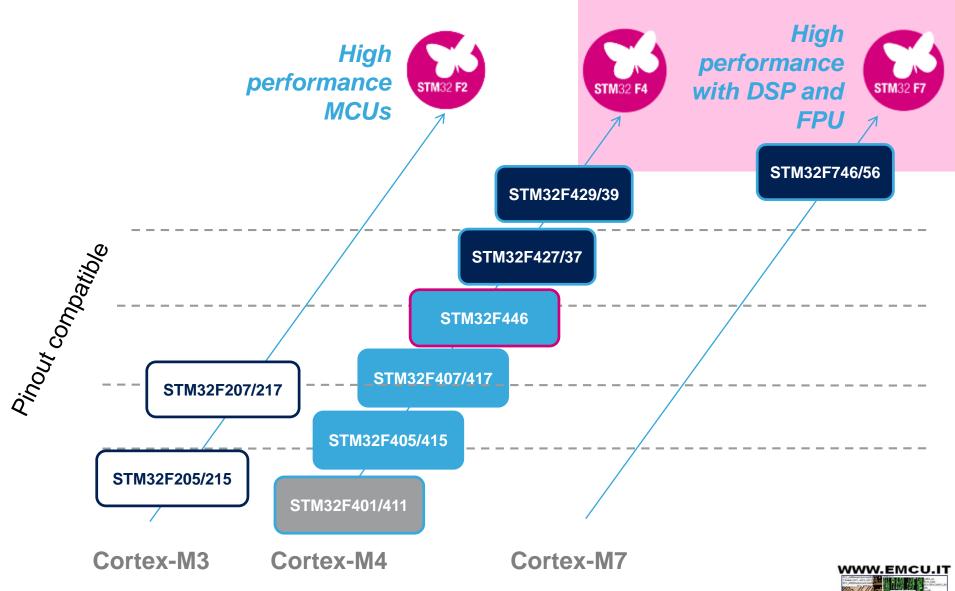

STM32 High Performance Platform STM32F2, F4 and F7

STM32 platform

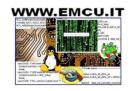

8 product series / 30 product lines

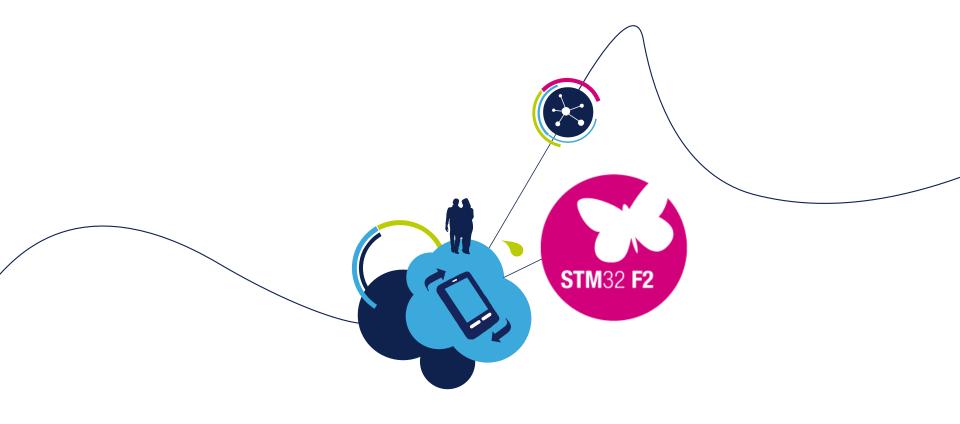
High-performance platform Cortex Mx


World's 1st MCU based on new Cortex-M7 w/ FPU 428DMIPS/1000 Coremarks,

- High performance, rich connectivity, high integration, Dynamic Efficiency
- From 105DMIPs up to 429DMIPS, based on Cortex-M3, M4 and M7

High-performance platform

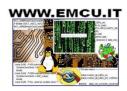




STM32F4 and F7: #1 in performance Certified by COREMARK

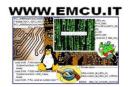
Freescale Kinetis K70 90nm	IAR v6.50	150	3.40	510.02	510.02		- comment	01/09/13
Renesas RX64M	IAR EWRX V2.50.1	120	4.25	510.20	510.20	✓	- comment	03/12/14
NXP LPC1850	Green Hills Multi 2012.1	180	2.85	513.24	513.24		- comment	05/11/12
Freescale MPC5674-F	DDCI, GCC 4.2.3	264	1.96	516.31	516.31		- comment	06/24/13
STMicro STM32F417IGt6	IAR-EWARM-6.50	168	3.37	565.73	565.73		- comment	11/20/12
NXP LPC4350	Green Hills Multi 2012.1	204	2.92	595.93	595.93		- comment	05/09/12
STMicroelectronics STM32F427IGT6	IAR 6.60	180	3.38	608.19	608.19		- comment	07/22/13
Microchip Technology PIC32MZ2048ECH100 MicroMIPS	Microchip MPLAB XC32 v1.33	200	3.18	636.97	636.97	√	- comment	09/24/14
Microchip PIC32MZ2048ECH100	Microchip MPLAB XC32v1.31	200	3.27	654.36	654.36	✓	- comment	01/13/14
Infineon TC1793N-512F270EF AB	GCC 4.6.3 (HighTec)	270	2.45	662.69	662.69		- comment	05/14/13
Freescale i.MX258	GCC4.7.2	400	1.76	704.32	704.32	PThread	s comment	01/03/13
Freescale MPC5676	DDCI, GCC 4.2.3	180	3.99	717.56	358.78	Proprietar	y comment	07/09/13
Freescale MPC8313VRAFFB	GCC 4.2.1	330	2.32	765.48	765.48		- comment	06/07/10
Freescale MPC8248CVRPIEA	gcc 4.4.6	300	2.76	827.13	827.13		- comment	11/13/13
Freescale Vybrid MVF61NS151CMK50	GCC4.7.3 armv7L-timesys- linux-gnueabi	500	1.67	832.89	832.89		- comment	12/31/69
Renesas SH7724	Code Sourcery gcc 4.4.1	500	1.71	856.90	856.90		- comment	08/25/11
Freescale i.MX35	GCC 4.3.3	533	1.61	860.22	860.22	2:Fork	s comment	11/26/12
STMicroelectronics STM32F756NGH6	IAR ANSI C/C++ Compiler V7.30.0.7673/W32 for ARM	200	5.01	1001.79	1001.79	√	- comment	09/24/14

STM32 F2 Series

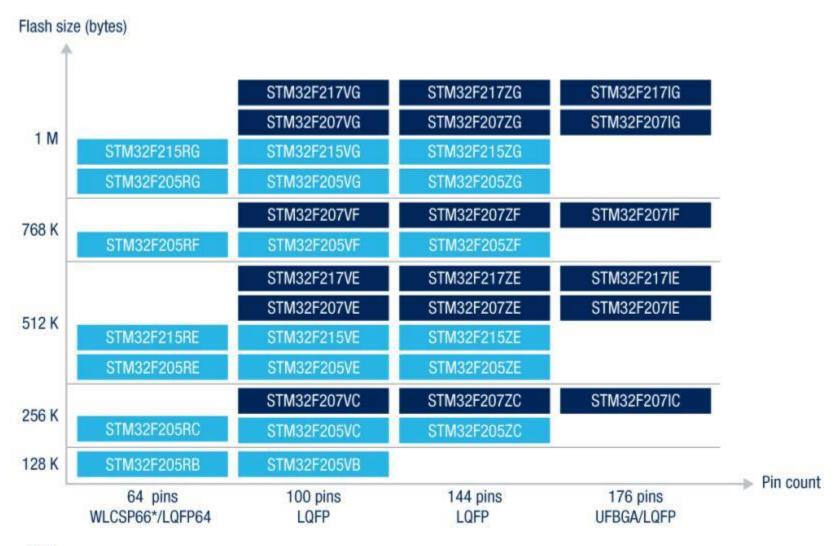

STM32 F2

High-performance MCUs

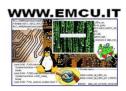
- High performance Cortex-M3 MCU, up 120 MHz/150 DMIPS
- High integration thanks to ST 90nm process: up to 1MB Flash/128kB SRAM
- Advanced connectivity: USB OTG, Ethernet, CAN



STM32 F2 Product lines


X	 ART Accelerator™ 2x USB2.0 OTG FS/HS SDIO USART, SPI, I²C 	Product line		FLASH (bytes)		Hardware Crypto/hash	2x 12-bit DAC	Ethernet I/F IEEE 1588	Camera I/F	FSMC
120 MHz		STM32F205								
Cortex®-M3 – 120	 2x CAN I²S + audio PLL 16 and 32-bit timers 	STM32F215	120	128K to 1M	Up to 128		•			•
	3x 12-bit ADC (0.5μs) Low voltage 1.7 to 3.6V	STM32F207	120	512K to 1M	Up to 128				•	
		STM32F217				•	•	•		•

Notes: 1/ 1.7 V for WLSCP66 package only and 1.8 V for all other packages 2/ Hardware crypto/Hash available on STM32F215 and STM32F217 only


STM32 F2 Portfolio

Note:

^{*} STM32F205RG and STM32F205RE only

STM32 F2 Block diagram

Packages

- WLSCP66 (<3.7x4mm)
- LQFP64, LQFP100
- LQFP144, LQFP176
- BGA176

Operating voltage

• 1.7 to 3.6V

Temperature range

- -40 to 85 °C
- -40 to 105°C

System Power supply 1.2 V regulator POR/PDR/PVD Xtal oscillators 32 kHz + 4 ~ 26 MHz Internal RC oscillators 32 kHz + 16 MHz PLL Clock control RTC/AWU SysTick timer 2x watchdoos (independent and window) 51/82/114/140 I/Os Cyclic redundancy check (CRC)

Control

2x 16-bit motor control
PWM
Synchronized AC timer
10x 16-bit timers
2x 32-bit timers

ART Accelerator™ **ARM Cortex-M3** CPU 120 MHz Nested vector controller (NVIC) MPU JTAG/SW debug/ETM Multi-AHB bus matrix

Crypto/hash processor²

16-channel DMA

3DES, AES 256 SHA-1, MD5, HMAC

True random number generator (RNG) 128-Kbyte Up to 1-Mbyte Flash memory

Up to 128-Kbyte SRAM

FSMC/ SRAM/NOR/NAND/CF/ LCD parallel interface

80-byte + 4-Kbyte backup SRAM

512 OTP bytes

Connectivity

Camera interface

3x SPI, 2x I2S, 3x I2C

Ethernet MAC 10/100 with IEEE 1588

2x CAN 2.0B

1x USB 2.0 OTG FS/HS1

1x USB 2.0 OTG FS

SDIO

6x USART LIN, smartcard, IrDA, modem control

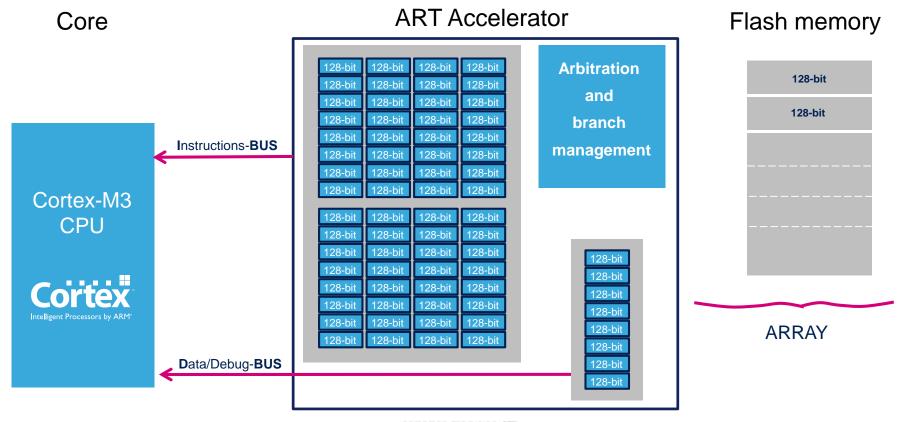
Analog

2-channel 2x 12-bit DAC

3x 12-bit ADC 24 channels / 2 MSPS

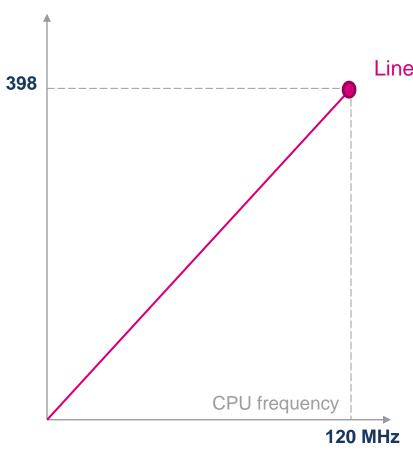
Temperature sensor

Notes:


- HS requires an external PHY connected to the ULPI interface
- Crypto/hash processor on STM32F217 and STM32F215

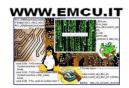
Processing performance

- ART Accelerator[™] for F2 series
 - The ART (Adaptive Real-Time) memory accelerator unleashes processing performance equivalent to 0-wait state Flash execution up to 120 MHz for F2 series

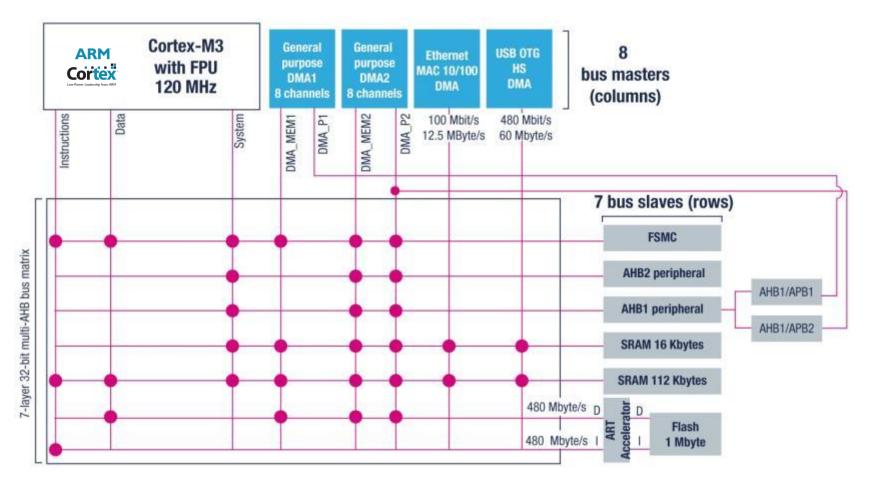


STM32F2

Providing more performance

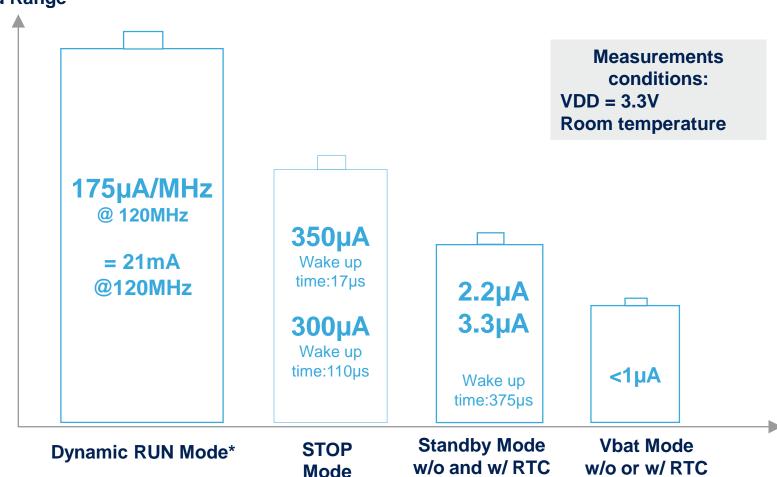

CoreMark score

Linear **execution performance** from Flash


- 120 MHz/150 DMIPS with ART Accelerator™
- Up to 398 CoreMark Result
- ARM Cortex-M3

System performance 13

32-bit multi-AHB bus matrix



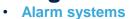
Power consumption figures i

^{*} Run mode Conditions: Coremark executed from Flash, peripherals OFF WWW.EMCU.IT

STM32F2 multiple applications 15

Industrial

- PI C
- **Inverters**
- **Power meters**
- Printers, scanners
- **Power meters**
- Industrial networking
- · Industrial motor drive
- Communication gateway



Consumer

- · PC peripherals, gaming
- Digital cameras, GPS platforms
- Home audio
- · Wi-Fi, Bluetooth modules
- Smartphone accessories

Building & security

HVAC

Medical

- · High-end glucose meters
- Power meters
- Battery-operated applications

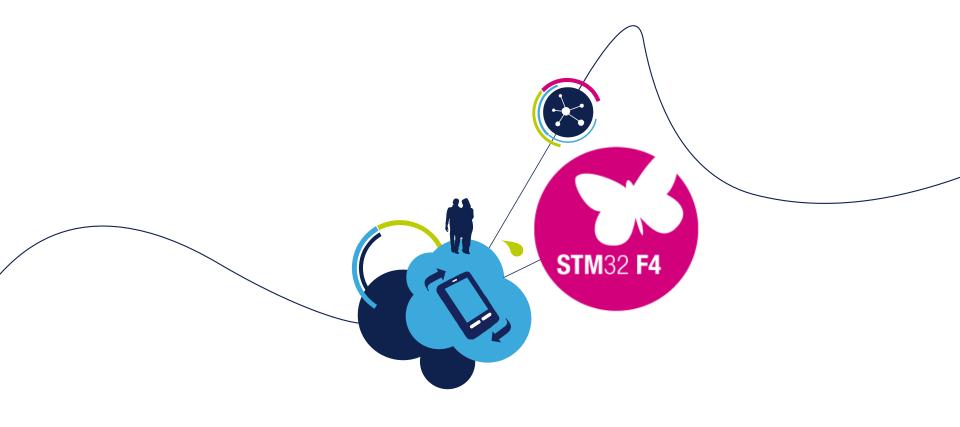
STM32F2-specific tools and Software

Evaluation boards:

- These boards provide connection to all I/Os and all peripherals available in the chip:
 - External memories, Ethernet, two USB OTG connectors, touchscreen TFT display, CMOS camera, audio output...

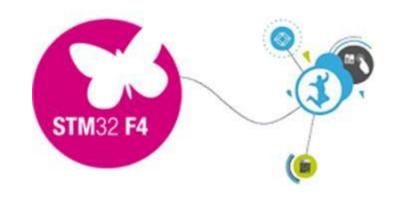
STM3220G-EVAL STM3221G-EVAL

Java evaluation kit:


- Complete platform to evaluate the development of embedded applications in Java for the STM32 F2 series microcontrollers.
- -> www.stm32java.com

STM3220G-JAVA

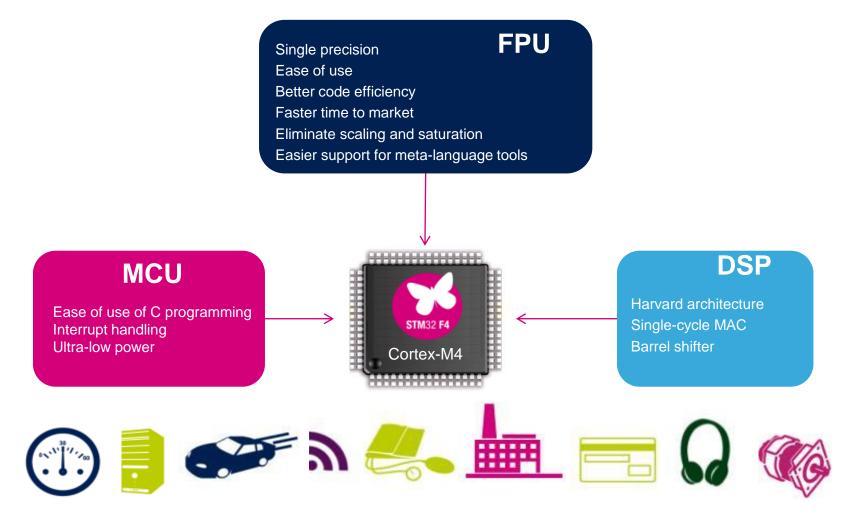
STM32 F4 Series

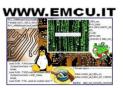


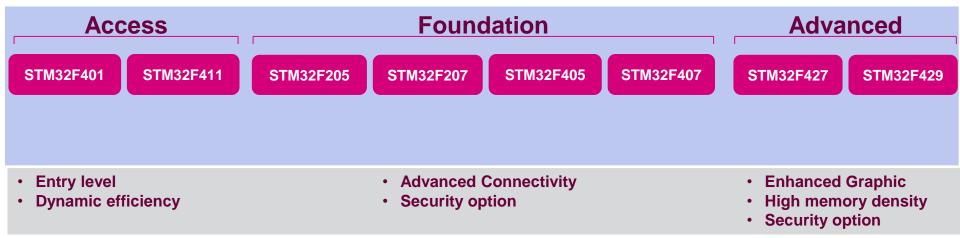
STM32 F4

High-performance MCUs with DSP and FPU

- World's highest performance Cortex-M MCU executing from Embedded Flash, Cortex-M4 core with Floating Point Unit up to 180 MHz/225 DMIPS
- High integration thanks to ST 90nm process (same platform as F2 series): up to 2MB Flash/256kB SRAM
- Advanced connectivity USB OTG, Ethernet, CAN, SDRAM interface, TFT LCD controller






ARM Cortex™-M4 Core I

High-performance platform

- High performance, rich connectivity, high integration, Dynamic Efficiency
- Over 300 part numbers in production with close pin-to-pin compatibility
- From 105DMIPs up to 428DMIPS, based on Cortex-M3, M4 w/ FPU

High-performance platform 21

ART Accelerator™ enabling 0 wait state executing from internal Flash

Up to 2x USB2.0 OTG FS/HS

SDIO

USART, SPI, IPC

IPS + audio PLL

16 and 32-bit timers

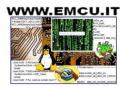
Up to 3x 12-bit ADC $(0.41 \mu s)$

Up to 2x 12-bit DAC

External memory controller (except for access lines)

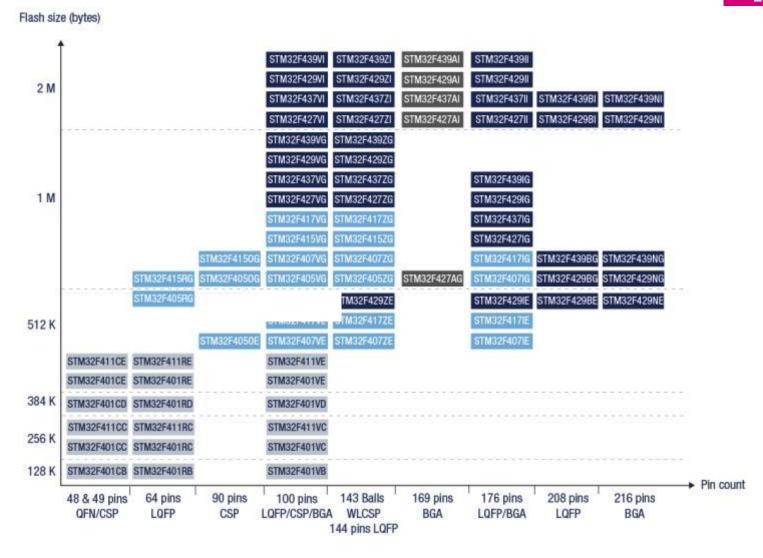
 Low voltage 1.71 to 3.6 V

Lines	STM32 F4	F _{cHu} (MHz)	Flash (bytes)	RAM (KB)	Ethernet VF IEEE 1588	Camera I/F	SDRAM I/F	SAI ³ I/F	Chrom-ART Grphic Accelerator™	TFT LCD controller	MPI DSI
Lines					2x CAN		Dual Quad-SPI	SPDIF RX			
	STM32F469 ²	180	512 K to	384	•		•	•		•	
Advanced	STM32F429 ²	180	2 M 512 K to 2 M	258			:	•			
A	STM32F427 ²	180	1 to 2 M	258	•	•	•	٠			
-	STM32F446	180	256 K to 512 K	128		•	:	:			
Foundation	STM32F407 ²	168	512 K to 1 M	192	:	•					
For	STM32F405 ²	168	512 K to 1 M	192							


Line	STM32F4 Access line	F _{CPU} (MHz)	Flash (KB)	RAM (KB)	RUN current (µA/MHz)	STOP current (µA)	Small package (mm)	BAM (Batch Acquisition Mode)
un.	STM32F411	100	258 to 512	128	Down to 100	Down to 12	Down to 3.034x3.22	•
S900	STM32F410	100	64 to 128	32	Down to 89	Down to 6	Down to 2.553x2.579	•
4	STM32F401	84	128 to 512	96	Down to 128	Down to 10	Down to 3x3	

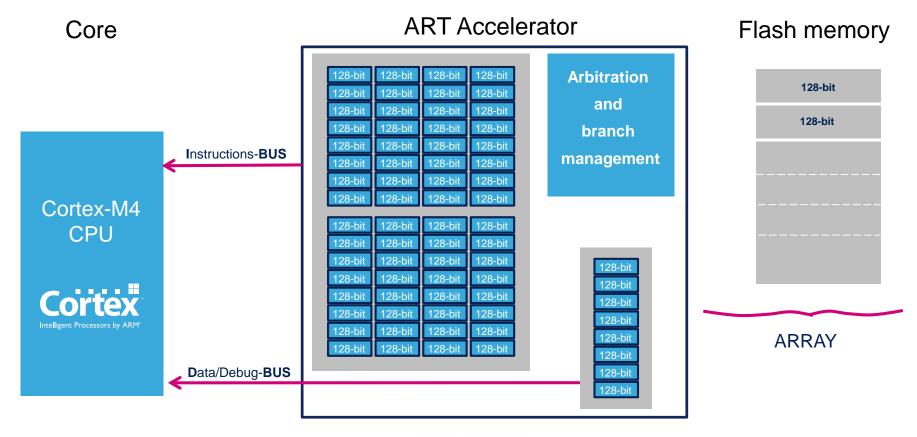
Notes: 1/1.7 V min on specific packages

2/ The same devices are also found with embedded Hardware crypto/hash.


3/ Serial Audio IF

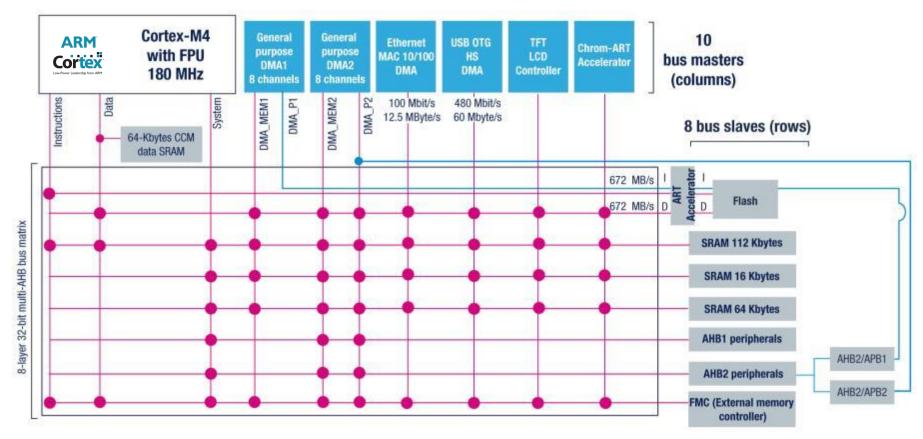
STM32 F4

STM32F4 portfolio



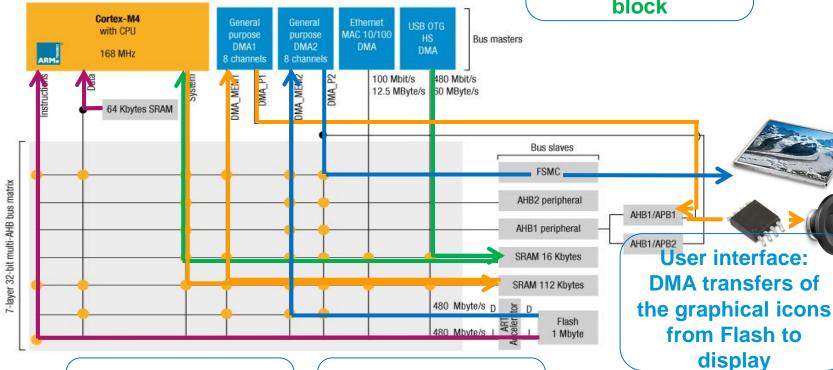
Processing performance

- ART Accelerator[™] for F4 series
 - The ART (Adaptive Real-Time) memory accelerator unleashes processing performance equivalent to 0-wait state Flash execution up to 180 MHz for F4 series



System performance 24

32-bit multi-AHB bus matrix



Real-time performance

32-bit multi-AHB bus matrix

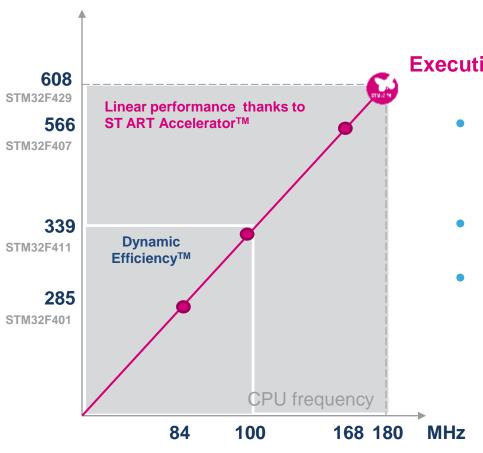
DMA transfer to audio output stage (I2S)

Compressed audio stream (MP3) to 16kByte SRAM block

MP3 decoder code execution by core

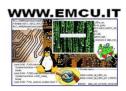
Access to the MP3 data for decompression

Decompressed audio stream to 112kByte SRAM block



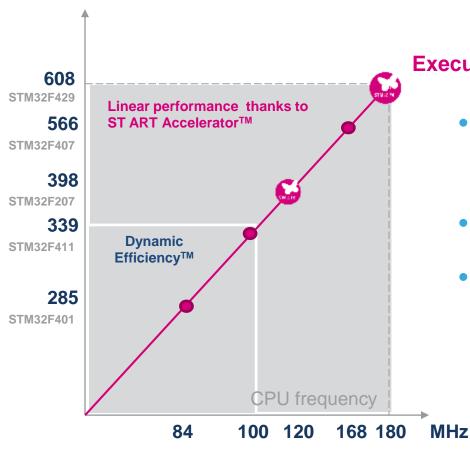
STM32F4

Providing more performance


CoreMark score

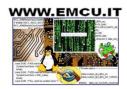
Execution performance from Flash

- Up to 180 MHz/ 225 DMIPS
 with ART Accelerator™
- Up to 608 CoreMark Result
- ARM Cortex-M4 with floating-point unit (FPU)



STM32 F2 STM32 F4

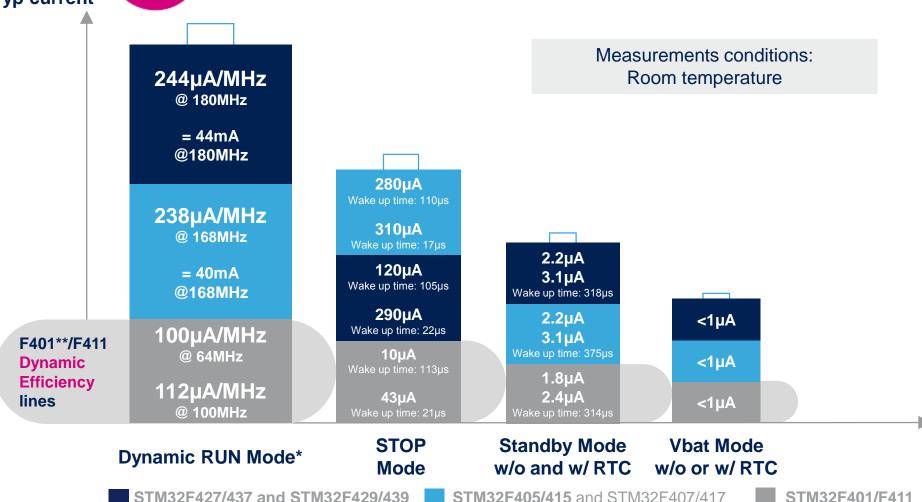
STM32F2 and F4 Providing more performance


CoreMark score

Execution performance from Flash

- Up to 180 MHz/ 225 DMIPS
 with ART Accelerator™
- Up to 608 CoreMark Result
- ARM Cortex-M3 and Cortex-M4 with floatingpoint unit (FPU)

Advanced connectivity 28


Peripherals	Performance
USB FS / HS	12 Mbit/s / 480 Mbit/s
USART	Up to 12.50 Mbit/s
SPI	Up to 50 Mbit/s
I ² C	Up to 1Mbit/s
GPIO toggling	Up to 90 MHz
3-phase MC timer	180 MHz PWM timer clock input
SDIO	Up to 50 MHz
I ² S and SAI	From 8 kHz to 192 kHz sampling frequencies
Camera interface	Up to 54 Mbyte/s at 54 MHz (8- to 14-bit parallel)
Crypto/hash processor	AES-256 up to 149.33 Mbyte/s
FMC	Up to 90 MHz (8-/16-/32-bit data bus, supports SRAM, PSRAM, NAND and NOR Flash, parallel graphic LCD), SDRAM, LPSDRAM (Low Power SDRAM)
12-bit ADC / 12-bit DAC	0.41 µs (2.4 MSPS, 7.2 MSPS in Interleaved mode) / 1 MSPS dual DAC
CAN 2.0B	Up to 2 independent CAN
Ethernet	10/100 Mbit/s MAC with hardware IEEE 1588
LCD TFT controller	Display size : QVGA, QWVGA, VGA, SVGA, XGA with 2-layer blending and dithering

F4 Power consumption figures

Legend:

^{*}Run mode Conditions: Coremark executed from Flash, peripherals OFF

^{**}For STM32F401:128µA/MHz @ 60MHz, 137µA/MHz @ 84MHz

STM32 F4 Typ current

244µA/MHz @ 180MHz

= 44mA@180MHz

238µA/MHz

@ 168MHz

=40mA@168MHz

175µA/MHz @ 120MHz

= 21mA@120MHz

F401**/F411 **Dynamic Efficiency** lines

100µA/MHz @ 64MHz

112µA/MHz @ 100MHz

Power consumption figures

Measurements conditions: Room temperature

F2 and **F4**

280µA Wake up time: 110µs

310µA Wake up time: 17µs

120µA Wake up time: 105µs

290uA

Wake up time: 22µs

350uA

300µA

10µA

Wake up time: 113µs

43uA Wake up time: 21µs

2.2µA 3.1uA Wake up time: 318µs

2.2µA

3.1µA Wake up time: 375µs

> 2.2µA 3.3uA

/ake up time:375µ

1.8µA 2.4µA

Wake up time: 314µs

<1µA <1µA

<1 µA

<1µA

Squaring the circle Performance Intervention

Dynamic RUN Mode*

STOP Mode

Standby Mode w/o and w/ RTC

Vbat Mode w/o or w/ RTC

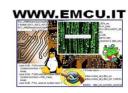
STM32F427/437 and STM32F429/439

STM32F405/415 and STM32F407/417

STM32F401/F411

Legend:

*Run mode Conditions: Coremark executed from Flash, peripherals OFF


**For STM32F401:128µA/MHz @ 60MHz, 137µA/MHz @ 84MHz

F2 and F4 High integration 31

Series	STM32 High-performance platform									
Flash/SRAM (bytes)	STM32F2	STM32F4								
256 K/64 K		WLCSP49 (3x3mm) UFBGA100 (7x7mm) UFQFPN48 (7x7mm)	F401							
512 K/96 K		WLCSP49 (3.07x3.07mm) UFBGA100 (7x7mm) UFQFPN48 (7x7mm)	F401							
512 K/128 K		WLCSP49 (3.034mm x 3.22mm) UFBGA100 (7x7mm) UFQFPN48 (7x7mm)	F411							
1 M/128 K	WLSCP66 (<3.7x4mm)									
1 M/192 K		WLSCP90 (<4x4.3 mm)	F405							
2 M/256 K		WLSCP143 (<4.5x5.6mm)	F429							

STM32F405/415/407/417

ART Accelerator™

Packages

- WLSCP90 (<4x4.3 mm)
- LQFP64
- LQFP100
- LQFP144
- LQFP176
- BGA176

Operating voltage

1.7 to 3.6V

Temperature range

- -40C to 85C
- -40C to 105C

System Power supply 1.2 V regulator POR/PDR/PVD Xtal oscillators 32 kHz + 4 to 26 MHz Internal RC oscillators 32 kHz + 16 MHz PLL Clock control RTC/AWU SysTick timer 2x watchdogs (independent and window) 51/82/114/140 I/Os

Cyclic redundancy check (CRC) Control

ARM Cortex-M4 168 MHz Floating point unit (FPU) Nested vector intercontroller (NVIC) MPU JTAG/SW debug/ETM Multi-AHB bus matrix

2x 16-bit motor control PWM Synchronized AC timer 10x 16-bit timers

2x 32-bit timers

SHA-1, MD5, HMAC True random number generator (RNG)

16-channel DMA

Crypto/hash processor²

3DES, AES 256

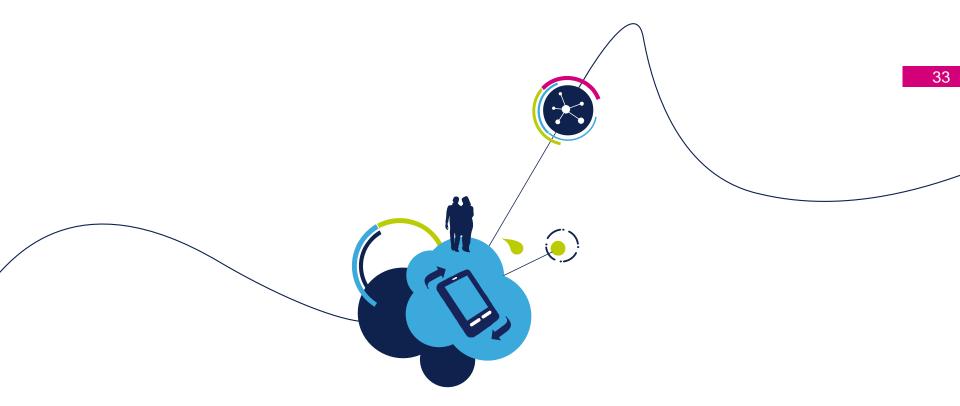
Up to 1-Mbyte Flash memory Up to 192-Kbyte SRAM FSMC/ SRAM/NOR/NAND/CF/ LCD parallel interface 80-byte + 4-Kbyte backup SRAM

512 OTP bytes

Connectivity Camera interface 3x SPI, 2x I2C, 3x I2C Ethernet MAC 10/100 with IEEE 1588 2x CAN 2.0B 1x USB 2.0 OTG FS/HS1 1x USB 2.0 OTG FS **6x USART** LIN, smartcard, IrDA. modem control

Analog

2-channel 2x 12-bit DAC


3x 12-bit ADC 24 channels/2.4 MSPS

Temperature sensor

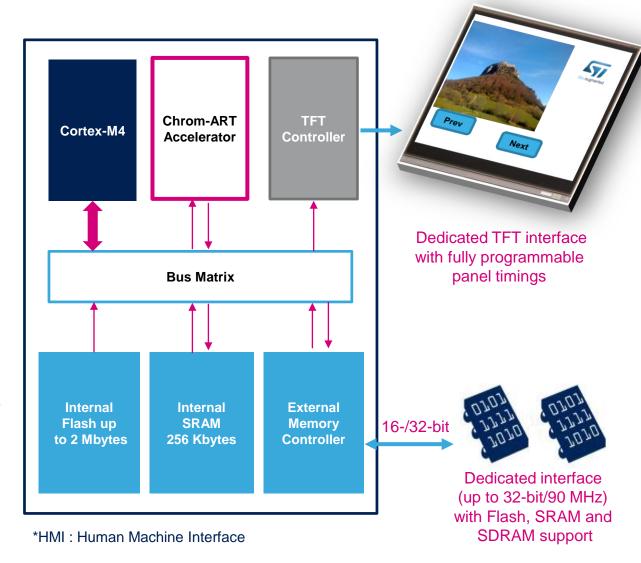
- 1. HS requires an external PHY connected to the ULPI interface
- 2. Crypto/hash processor on STM32F417 and STM32F415

STM32F4 Advanced graphic lines

STM32F427/429 Highlights 34

- 180 MHz/225 DMIPS
- Dual bank Flash (in both 1-MB and 2-MB), 256kB SRAM
- SDRAM Interface (up to 32-bit)
- LCD-TFT controller supporting up to SVGA (800x600)
- Better graphics with ST Chrom-ART Accelerator™:
 - x2 more performance vs. CPU alone
 - Offloads the CPU for graphical data generation:
 - Raw data copy
 - Pixel format conversion
 - Image blending (image mixing with some transparency)
- 100 μA typ. in Stop mode

Press release: http://www.st.com/web/en/press/en/p3357



STM32F429 as HMI* controller 35

STM32F4x9 using Chrom-ART Accelerator, internal or external memory for frame buffer and TFT controller for display

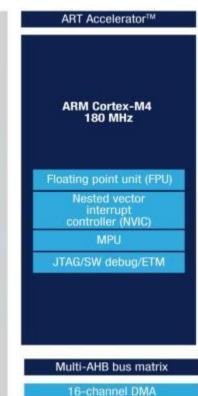
- Up to XGA (1024 x 768)
- 16-/32-bit external memory interface
- Recommended packages: LQFP144,LQFP176/BGA176 or LQFP208/BGA216

STM32 F4

STM32F427/437/429/439

Packages

- WLSCP143 (<4.5x5.6mm)
- LQFP100
- LQFP144
- LQFP176
- BGA176
- LQFP208
- BGA216


Operating voltage

1.7 to 3.6V

Temperature range

- -40C to 85C
- -40C to 105C

Power supply 1.2 V regulator POR/PDR/PVD Xtal oscillators 32 kHz + 4 ~ 26 MHz Internal RC oscillators 32 kHz + 16 MHz Clock control 1x SysTick timer 2x watchdogs (independent and window) 82/114/140/168 I/Os Cyclic redundancy check (CRC)

SDRAM 80-byte + 4-Kbyte backup SRAM 512 OTP bytes Connectivity Camera interface 6x SPI, 2x I2S, 3x I2C3 Ethernet MAC 10/100 with IEEE 1588 2x CAN 2.0B 1x USB 2.0 OTG FS/HS 1x USB 2.0 OTG FS 1x SDIO 4x USART + 4 UART LIN, smartcard, IrDA. modem control 1x SAI (Serial audio interface)

Up to 2-Mbyte dual bank Flash 256-Kbyte SRAM

Chrom-ART Accelerator™

LCD-TFT controller⁴

FMC/SRAM/NOR/NAND/CF/

Control

System

PLL

2x 16-bit motor control PWM Synchronized AC timer 5x 16-bit timers 2x 32-bit timers

3x 16-bit timers

True random number generator (RNG)

Crypto/hash processor²

3DES, AES 256, GCM, CCM

SHA-1, SHA-256, MD5,

HMAC

Analog

2-channel 2x 12-bit DAC

3x 12-bit ADC 24 channels / 2 MSPS

Temperature sensor

Notes:

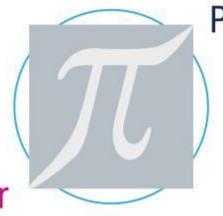
- HS requires an external PHY connected to the ULPI interface
- Crypto/hash processor on STM32F415, STM32F417, STM32F437 and STM32F439
- With digital filter feature, up to 1 Mbit/second
- For STM32F4x9 only

STM32 Dynamic Efficiency TM

Less Dynamic Power. More performance.

- STM32 Dynamic Efficiency [™] stands for the reduction of Power consumption in run mode with a simultaneous increase in Processing Performance and Integration (P²I).
- STM32 Dynamic Efficiency [™] brings innovation while applying existing ST advanced technologies.

STM32F401 and STM32F411 microcontrollers are the first 2 lines of STM32 Dynamic Efficiency™ devices



STM32 Dynamic EfficiencyTM

Less dynamic power More performance

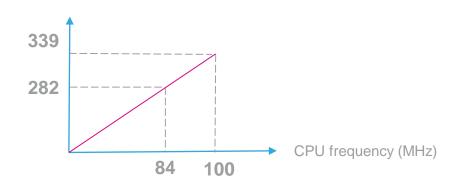
Squaring the circle

Performance. Integration

Dynamic power

STM32 Dynamic Efficiency TM Technologies

- ART AcceleratorTM: Highest execution performance from Flash.
 - ST Adaptive Real Time (ART) Accelerator is a prefetch queue and branch cache allowing zero-wait
 execution from embedded Flash. The performance of the core is then fully unleashed and available
 to the user. Because it is much smaller in die size than a real cache, performance come with high
 integration. Execution from the branch cache reduces the access to the Flash and reduces power
 consumption.
- ST 90 nm process: Less dynamic power. More integration and performance.
 - Higher integration comes with smaller capacities inside the transistors used inside the STM32 integrated circuit. This translates into faster performance as charge and discharge timings are reduced and into lower dynamic power.
- Voltage scaling: Optimum dynamic power consumption. Whatever your performance needs.
 - By allowing the user to dynamically adapt the core voltage to the performance needs, the user always gets the lowest dynamic current.
- Batch Acquisition Mode (BAM): Always ON data collection, even when the core is stopped.
 - DMA keeps transferring incoming data from peripherals to memory, and wakes up the core only
 when needed to reach the lowest power consumption. The core can either execute first level data
 processing from code stored in RAM or resume executing from Flash.



STM32F401/F411 Highlights 40

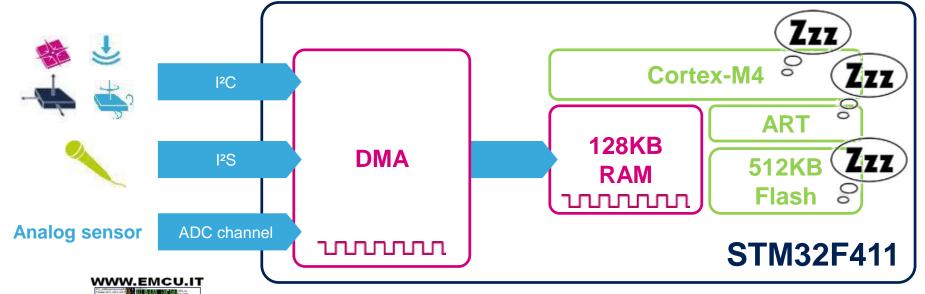
CoreMark score

The best balance

Performance

Power consumption

Integration

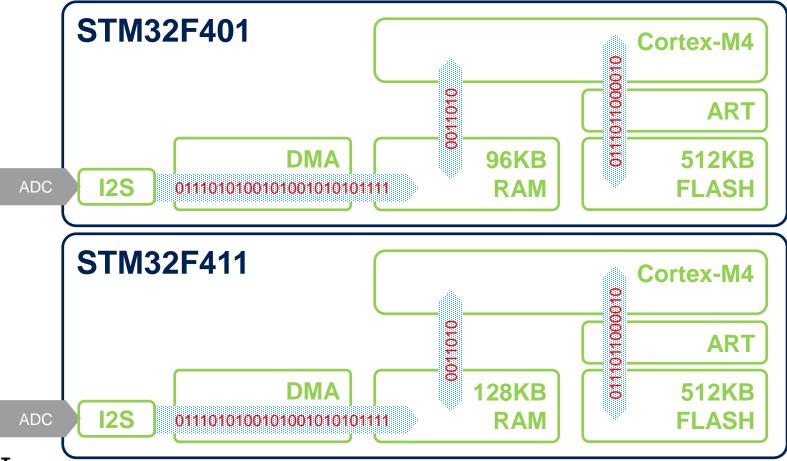

STM32F401 & STM32F411 main specification details

Flash low power mode use cases

- Batch Acquisition Mode (BAM) where the MCU core is stopped while interfaces (I²C, SPI, I²S, ...) are fetching data, being able to put the flash in power down will reduce even further the power consumption
- Applications where the MCU core and the RAM are running without the flash

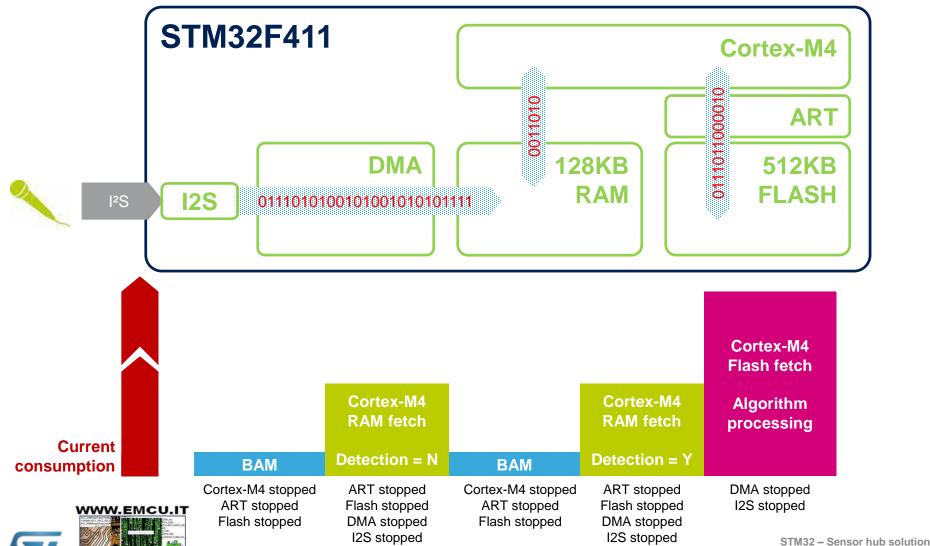
Flash low power mode application example

- MCU core is in sleep mode (core clock stopped waiting for interrupt)
- Interface are running
- Flash is in power down and flash interface (ARTTM accelerator) clock is stopped
- · Only DMA channel are enabled and running

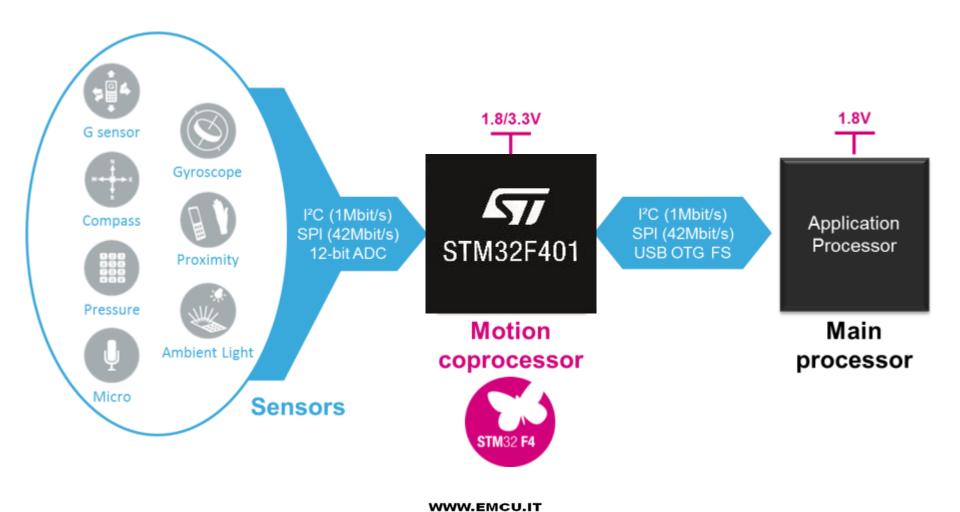


STM32F411

Enhanced peripheral sleep management


Core can fetch data from RAM while <u>Flash and ART</u> are stopped (new STM32F411 mode)

STM32F411

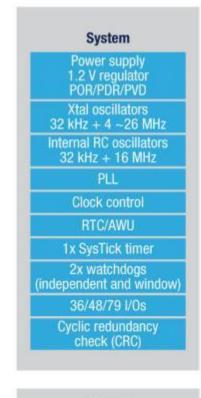

Batch Acquisition Mode (BAM) - Audio ex.

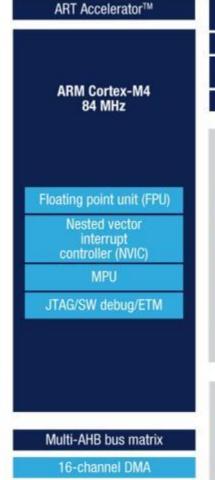
Example: STM32F401 as sensor hub

STM32F401 128kB/256kB Flash

Dynamic Efficiency Line

Packages


- WLSCP49 (3x3 mm)
- UFQFN48
- LQFP64
- LQFP100
- BGA100


1.7 to 3.6V

Temperature range

- -40C to 85C
- -40C to 105C

3x 16-bit timers
2x 32-bit timers
3x 16-bit timers

Up to 256-kbyte Flash
64-Kbyte SRAM
80-byte backup
registers
512 OTP bytes

4x SPI, 2x I²S, 3x I²C ¹ 1x USB 2.0 OTG FS 1x SDIO 3x USART, LIN, smartcard, IrDA,

Analog 12-bit ADC

1x 12-bit ADC 16 channels / 2 MSPS Temperature sensor

modem control

Notes:

With digital filter feature, upt to 1 Mbit/second

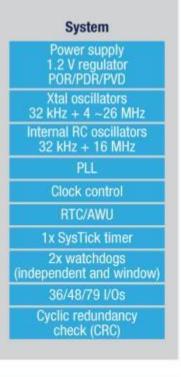
STM32F401 384kB/512kB Flash

ART Accelerator™

Dynamic Efficiency Line Squaring the circle Performance, Imputation

Packages

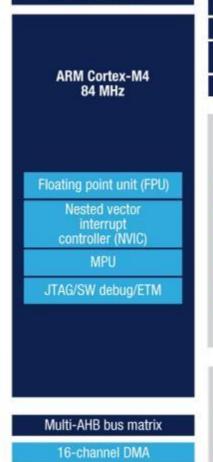
- WLSCP49 (around 3.07x3.07 mm) pin to pin compatible with 128kB and 256kB F401
- UFQFN48
- LQFP64
- LQFP100
- BGA100



Operating voltage

1.7 to 3.6V

Temperature range


- -40C to 85C
- -40C to 105C

Control

3x 16-bit timers 2x 32-bit timers

3x 16-bit timers

Up to 512-kbyte Flash

96-Kbyte SRAM

80-byte backup registers

512 OTP bytes

Connectivity

4x SPI, 2x I2S. 3x I2C

1x USB 2.0 OTG FS

1x SDIO

3x USART LIN, smartcard, IrDA, modern control

Analog

1x 12-bit ADC 16 channels / 2 MSPS

Temperature sensor

Notes:

With digital filter feature, upt to 1 Mbit/second

STM32F411 256kB/512kB Flash Dynamic Efficiency Line

- 100MHz/125 DMIPs from flash
- Down to 100uA/MHz, 10uA typical in STOP mode
- **Batch Acquisition Mode** (BAM)
- 5 SPI/5 I2S (2 full duplex)
- Packages
 - WLSCP49 (3.034mmx3.22mm)
 - UFQFN48, LQFP64, LQFP100, BGA100
 - Operating voltage

System Power supply 1.2 V regulator POR/PDR/PVD Xtal oscillators 32 kHz + 4 ~26 MHz Internal RC oscillators 32 kHz + 16 MHz Clock control 1x SysTick timer 2x watchdogs (independent and window) 36/48/79 I/Os Cyclic redundancy check (CRC)

Control

5x 16-bit timers

1x 16-bit motor control PWM synchronized AC timer

2x 32-bit timers

Note:

Multi-AHB bus matrix

16-channel DMA with Batch Acquisition Mode (BAM)

ART Accelerator™

ARM Cortex-M4 100 MHz

Floating point unit (FPU)

Nested vector controller (NVIC)

MPU

JTAG/SW debug/ETM

Up to 512-kbyte Flash

128-Kbyte SRAM

80-byte backup registers

512 OTP bytes

Connectivity

5x SPI or 5x IPS. (2x PS with full duplex)

3x I2C 1

1x USB 2.0 OTG FS

1x SDIO

3x USART. LIN, smartcard, IrDA modem control

Analog

1x 12-bit ADC 16 channels / 2.4 MSPS

Temperature sensor

• 1.7 to 3.6V

With digital filter feature, upt to 1 Mbit/second

STM32F4 multiple applications 48

Industrial

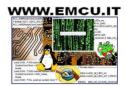
- **Inverters Power meters**
- Printers, scanners
- Industrial networking
- · Industrial motor drive
- Communication gateway

Building & security

HVAC

Consumer

- · PC peripherals, gaming
- Digital cameras, GPS platforms
- Home audio
- · Wi-Fi, Bluetooth modules
- Smartphone accessories



Battery-operated applications

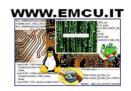
STM32F4 real life applications 49

Smart watch: Main application controller or sensor hub

Smart phone, tablets and monitor sensor hub for MEMS and optical touch

Industrial/home automation panel: Main application controller

STM32F4 real life applications 50


Appliance, Door Camera

STM32F4 specific Hardware

Evaluation boards:

Large offer of evaluations boards:

- STM3240G-EVAL
- STM3241G-EVAL
- STM32429I-EVAL
- STM32439I-EVAL

- STM32F4DISCOVERY
- 32F401CDISCOVERY
- 32F411EDISCOVERY (Q4 2014)
- 32F429IDISCOVERY

- NUCLEO-F401RE
- NUCLEO-F411RE

STM32439I-EVAL

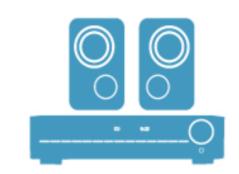
STM32429I-EVAL

32F429IDISCOVERY 32F401CDISCOVERY 32F411EDISCOVERY

STM32F4DISCOVERY

NUCLEO-F401RE NUCLEO-F411RE

STM32F4 optimal software 52


- Graphical Stack -> <u>www.st.com/stemwin</u>
 - SEGGER and ST signed an agreement around emWin graphical stack. The solution is called **STemWin**:
 - Professional well-known stack solution
 - All emWin Widgets and PC Tools: GUIBuilder, simulator, widgets
 - Free for all STM32, delivered in binary
 - Takes benefit from STM32F4 Chrom-ART Accelerator! -Week37

- Full collection of codecs:
 - MP3, WMA, AAC-LC, HE-AACv1, HE-AACv2, Ogg Vorbis, G711, G726, IMA-ADPCM, Speex, ...
- ST Post Processing Algorithms:
 - Sample Rate Converters
 - Filters with examples like Bass Mix, Loudness....
 - Smart Volume Control: volume increase with no saturation
 - Stereo Widening

Welcome to STM32Java

(Evaluation)

Getting Storted

STM32F4 advanced Solutions 53

Beyond C Language!

- Java evaluation kit:
 - Complete platform to evaluate the development of embedded applications in Java for the STM32 F4 series microcontrollers.
 - -> www.stm32java.com

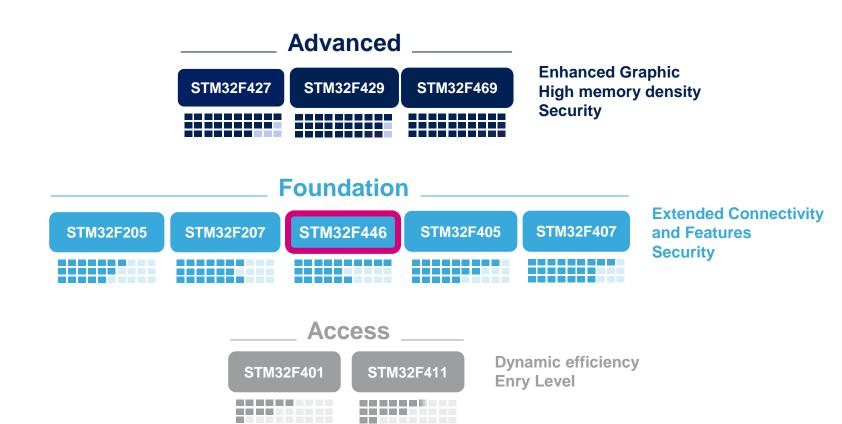
Net Micro framework

- Full support for Microsoft .Net Micro **Framework**
- Full support for Microsoft Gadgeteer hobbyists initiative

STM3240G-ETH/NMF + STM3240G-USB/NMF

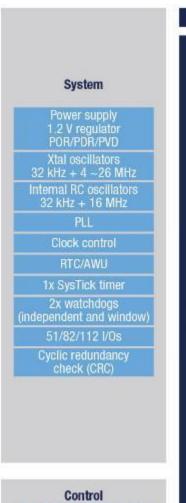
STM32F446

Product highlights

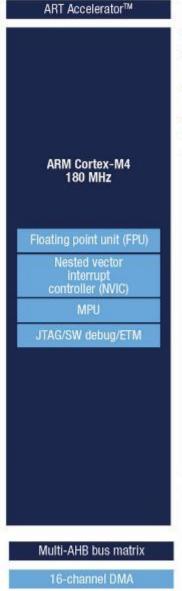


STM32 F446

Cost effective high performance MCU with SDRAM and Quad SPI

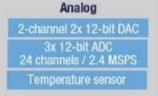


STM32F446 – Block diagram



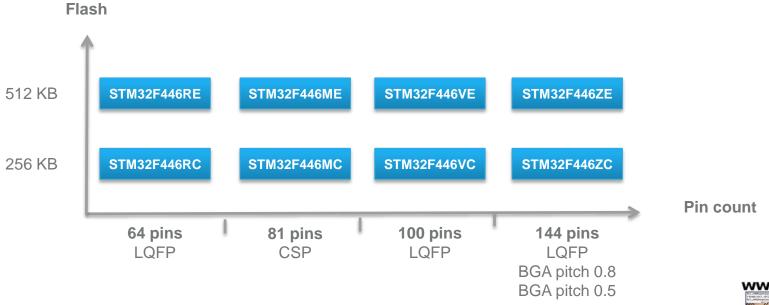
Control

2x 16-bit motor control
PWM
Synchronized AC timer


5x 16-bit timers
2x 32-bit timers

3x 16-bit timers

512-Kbyte Flash
128-Kbyte SRAM
External memory interface
W/SDRAM support
80-byte + 4-Kbyte
backup SRAM
512 OTP bytes


STM32F446 line

Packages

- WLSCP
- LQFP64, LQFP100, LQFP144
- BGA144 pitch 0.5, BGA 144 pitch 0.8

Memory size:

- 256-Kbyte Flash/ 128-Kbyte SRAM
- 512-Kbyte Flash/ 128-Kbyte SRAM

STM32F446 Highlights 58

High Performance

- Cortex-M4
- DSP and FPU
- ART™ accelerator allowing zero wait state exection from flash
- Achieving 225 DMIPS and 608 Coremark scores

Compact internal Memory ressources

- 512 KB internal Flash
- 128 KB internal RAM

STM32F446 Highlights 59

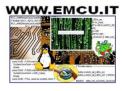
External memory interfaces

- Flexible Memory controller (FMC)
 - Running at 90MHz and supporting memory remap mode to offer higher perfomance
 - Supporting external SRAM, PSRAM, SDRAM/LPSDR SDRAM, Flash NOR/NAND memories
 - Supporting Intel 8080 and Motorola 6800 LCD parallel interfaces for cost effective Graphical interfaces using LDC with embedded controllers
- Dual Quad SPI interface (QSPI)
 - Supporting external single, dual or quad SPI NOR Flash memories
 - Memory Mapped mode supporting up to 256 Mbytes external SPI NOR flash
 - Up to 90 Mbytes/s in SDR mode and up to 120Mbytes/s in SDR mode
 - Dual quad SPI mode allowing higher throughput

STM32F446 Highlights 60

Upgraded USB features

- Added Dedicated USB power rails.
- additional support of Link Power Mode (LPM)
 - A new intermediate low power state with short entry and exit times


Extended Connectivity

- HDMI CEC controller
- Up to 7 simultaneous I²S channels
 - 3 I²S Half duplex
 - 2 Serial Audio Interfaces supporting I²S full duplex and Time Division Multiplexing
- SPDIF input interface
 - Up to 4 parallel SPDIF inputs
 - Supporting analog and optical inputs
 - Up to 12.288 MHz symbol rate
 - Support from 32 to 192KHz stereo streams
 - Support up to 5.1 multi-channel surround sound

Power efficiency

Targeted <100 uA in STOP mode

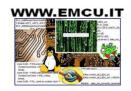
F446 – New Features Benefits — 61

- Quad SPI interface (QSPI)
 - NOR flash interface requiring a limited number of pins (5) pins in single QSPI mode and 9 pins in dual mode QSPI)
 - Allowing efficient NOR flash extension in small packages and so enabling better BOM costs
 - Dual quad SPI mode
 - Allow double the throughput by accessing 2 external QSPI flash memories in parallel
 - Possibile to have the QSPI Flash memory mapped
 - Allowing to access the QSPI external Flash as an internal flash and so avoiding all memory access implementation overhead
 - Coupling the QSPI with the FMC
 - Releasing the application optimization constraints when both external Flash and external RAM are required

F446 – New Features Benefits

Upgraded USB features

- Added Dedicated USB power rails
 - Avoiding external PHYs when using USB in low power supply ranges
- additional support of Link Power Mode (LPM)
 - Allowing finer power management leading to significant power savings
 - Compliency with the latest USB standard updates.


Extended Connectivity

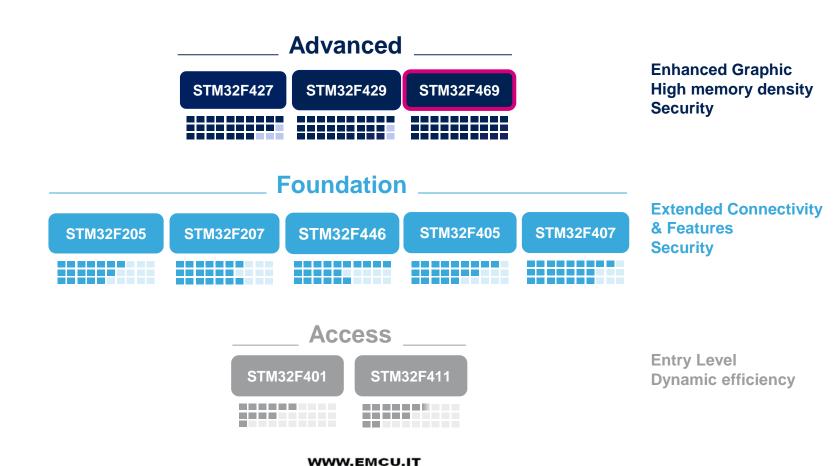
- HDMI CEC controller
 - Enabling the control of different HDMI connected devices through a single remote control.
- SPDIF input interface
 - Allowing an integrated solution offering enabling better BOM cost in consumer audio application using SPDIF interfaces

Power efficiency

Targeted <100 uA in STOP mode

STM32F469

Product highlights



STM32F469

High performance MCU with I Extended SDRAM, Quad SPI and MIPI DSI interface

STM32F469/479 block diagram

WWW.EMCU.IT

Packages :

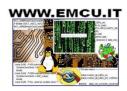
- WLCSP168
- BGA168
- LQFP208
- BGA216
- LQFP 176

Memory sizes

- 2MB Flash, 384KB RAM
- 1MB Flash, 384KB RAM
- 512KB Flash, 384KB RAM

Cryptography

 F479 embeds a HW Crypto processor



STM32F469/F479 lines

F469 Highlights

High Performance

- Cortex-M4 with DSP and FPU
- ART[™] accelerator allowing zero wait state exection from flash
 - Achieving 225 DMIPS and 608 coremark scores

Advanced Graphics

- Chrom-ARTTM HW Graphical accelerator
 - Offloads the CPU from repetitive graphics operations
 - · Efficient data copy, transparency effects and pixel format conversion
- Embedded display Controllers
 - MIPI[®] DSI controller
 - · high-speed differential serial interface
 - Up to 720p 30Hz resolution
 - Interfacing display modules w or w/o on-panel display controller or frame buffer
 - 2 D-PHY data Lanes with up to 500Mbs for each line
 - TFT LCD controller
 - 24-bit parallel RGB interface
 - Up to XGA resolution
 - · 2 display layers with dedicated FIFOs
 - Color look-up table with up to 256 24-bit colors per display layer

F469 Highlights

Extended Memory ressources

- Up to 2MBytes internal Flash
- 384 KB internal RAM including 64KB CCM

External memory interfaces

- Flexible Memory controller (FMC)
 - 90MHz I/F with memory remap capability for higher perfomance
 - SRAM, PSRAM, SDRAM/LPSDR SDRAM, Flash NOR/NAND support
 - Intel 8080 and Motorola 6800 LCD parallel interfaces for cost effective Graphical interfaces using LDC with embedded controllers
- Dual Quad SPI interface (QSPI)
 - SPI NOR Flash (1-bit), quad SPI (4-bit) or dual-Quad (8-bit) SPI NOR Flash support
 - Memory Mapped mode supporting up to 256 Mbytes external SPI NOR flash
 - Up to 90 Mbytes/s in SDR mode and up to 120Mbytes/s in DDR mode

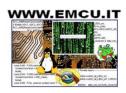
Upgraded USB features

- Added Dedicated USB power rails.
- additional support of Link Power Mode (LPM)
 - low power state with short entry and exit times

F469 Features benefits

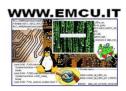
- Chrom-ARTTM HW Graphical accelerator
 - BETTER Graphics with LESS CPU load
 - Enabling both advanced GUI and real time processing with a single MCU

High quality Rendering


Smooth transitions

Motion fluidity

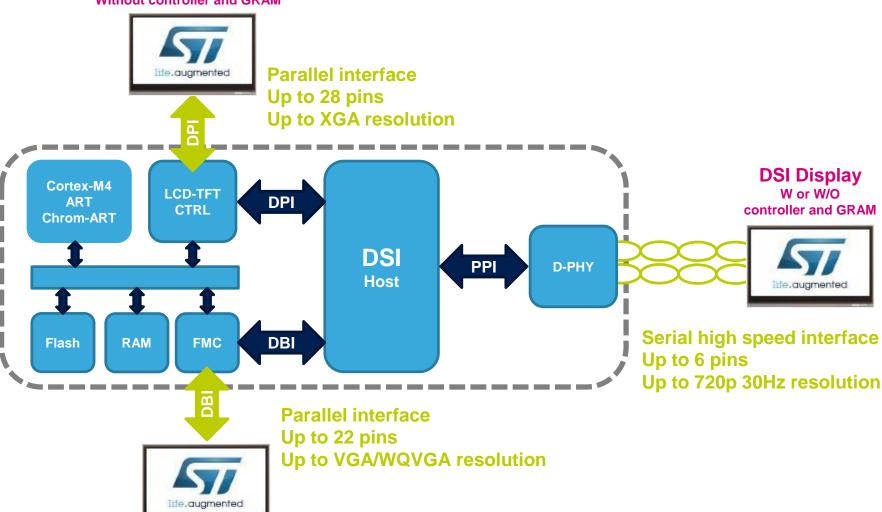
F469 Features & Benefits 70


MIPI® DSI controller

- Advanced Animation and Graphical user interfaces
- Aligned on mobile industry standards
 - Opening the door to next generation displays with higher pixel density
- Only 2 pins for each Lane are requested to interface with the display panels
 - Availibility even on small packages => BOM cost saving
- Lower power consumption and less electromagnetic interference

TFT LCD controller

- Advanced animation and graphical user interfaces
- Drives displays without embedded controllers → BOM cost saving



Display interfaces with STM32F469 71

Parallel interface LCD Display

Parallel interface LCD Display With controller and GRAM

F469Features benefits _____

Extended Memory ressources

- Up to 2MBytes internal Flash
- 384 KB internal RAM including 64KB CCM
 - Enables advanced data processing, high integration and higher graphic resolutions

reso	lutior	า→

	BUFFER SIZES (Kbytes) ڬ	CGA (320x200)	QVGA (320x240)	WQVGA (480x272)	VGA (640x480)	WVGA (800x480)	SVGA (800x600)	XGA (1024x768)
la consti	1 (2 colors)	7.8	9.4	15.9	37.5	46.9	58.6	96.0
bpp ↓	2 (4 colors)	15.6	18.8	31.9	75.0	93.8	117.2	192.0
	4(16 colors)	31.3	37.5	63.8	150.0	187.5	234.4	384.0
	8 (256 colors)	62.5	75.0	127.5	300.0	375.0	468.8	768.0
	16 (high color)	125.0	150.0	255.0	600.0	750.0	937.5	1536.0
	24 (true color)	187.5	225.0	382.5	900.0	1125.0	1406.3	2304.0
	32 (deep color)	250.0	300.0	510.0	1200.0	1500.0	1875.0	3072.0

Double buffer

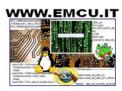
Single buffer

External memory needed

F469 Features & Benefits 73

Quad SPI interface (QSPI)

- NOR flash interface requiring a limited number of pins (5 pins in single QSPI mode and 9 pins in dual mode QSPI)
 - Fast and cost effective NOR flash extension available from the lowest pin count MCU packages → lower BOM cost
- Dual quad SPI mode
 - Double the throughput by accessing 2 external QSPI flash memories in parallel
- Possibile to have the QSPI Flash memory internally mapped
 - Allowing to access the QSPI external Flash as an internal flash and so avoiding all memory access overhead
- Non exclusive with the FMC
 - Allowing to simplify an application using both external Flash and external RAM.



F469 Features Benefits 74

Upgraded USB connectivity

- Added Dedicated power rails supplying the 2 USB peripherals.
 - Enables USB connectivity even when the MCU is supplied at 1.8V
- Link Power Mode (LPM)
 - Compliant with USB IF specification
 - Finer power management enabling significant power savings

Application exemples 75

Smart watch

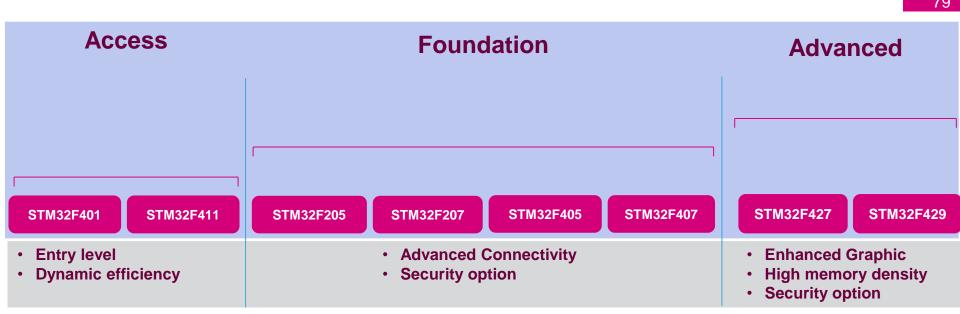
Main application controller

Industrial/home automation panel

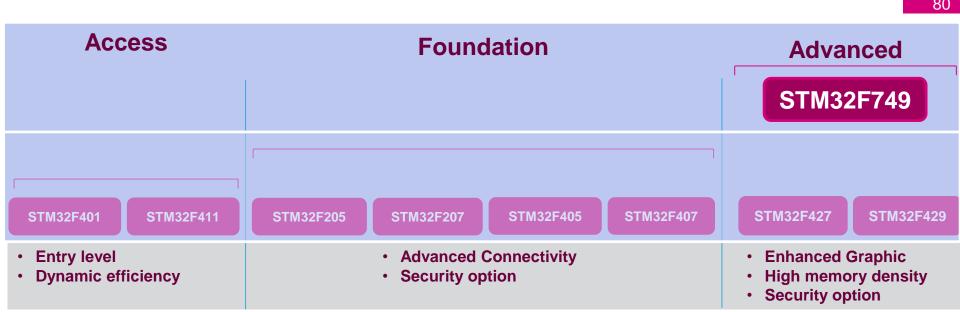
STM32F469 Application example No more DSI bridge needed **W** Saved cost: ~0.8\$ Bridge Saved size: ~4.5x4.5 mm RF STM32F469 No more external USB PHY needed Saved cost (including cristal): ~0.5\$ External Saved size: ~3.5x3.5 mm Memory Potentially, no more external RAM needed Depending on display resolution Saved cost: ~0.6-0.7\$ Saved size: ~8x13 mm Sensors

STM32F469 77 Application exemple No more DSI bridge needed **W** Saved cost: ~0.8\$ Bridge Saved size: ~4.5x4.5 mm RF 1.8 V 3.3 V 384KB No more external USB PHY needed Saved cost (including cristal): ~0.5\$ **External** Saved size: ~3.5x3.5 mm Memory Potentially, no more external RAM needed Depending on display resolution Saved cost: ~0.6-0.7\$ Saved size: ~8x13 mm Sensors WWW.EMCU.IT

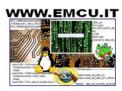
STM32 F7 Series


Product highlights

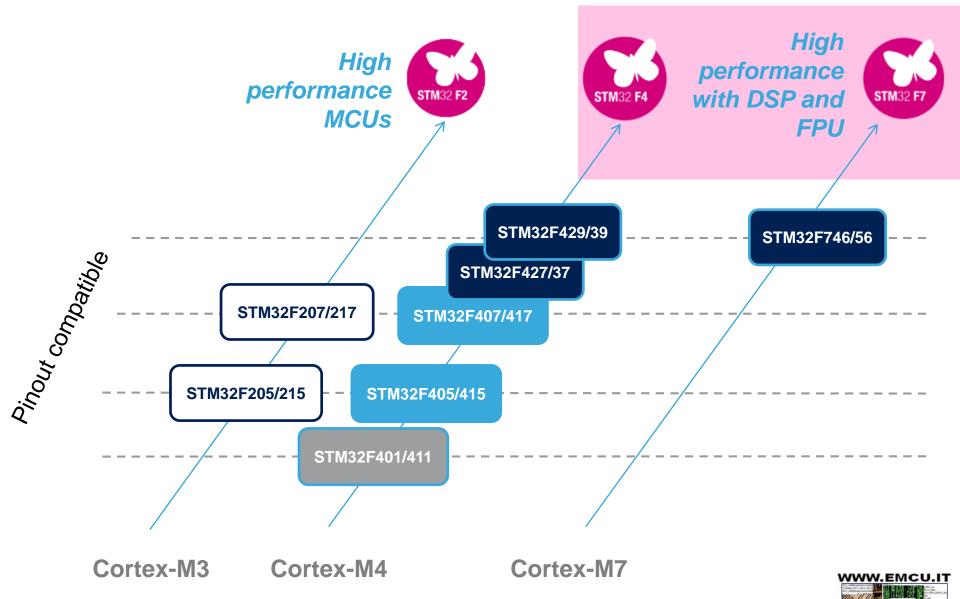
High-performance platform



- High performance, rich connectivity, high integration, Dynamic Efficiency
- From 105DMIPs up to 225DMIPS, based on Cortex-M3 or M4 w/ FPU
- Over 300 part numbers with close pin-to-pin compatibility

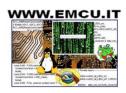


High-performance platform Cortex M7



NEW STM32F746 is sampling at OEMs 428DMIPS/1000 Coremarks, World's 1st MCU based on new Cortex-M7 w/ FPU

High-performance platform



STM32 F7: World's 1st Cortex-M7 based MCU The smartest STM32 ever

- Twice the performance from internal and external memories :
 - Create smarter and more responsive applications that were not possible before on an MCU
 - External memory interface with no performance penalty allowing unlimited resources to fit the biggest code and data requirements
- A complete new set of peripherals
 - Benefit from the latest features available in the STM32 portfolio
- Increase the performance, not the power consumption
 - Bring innovation inside power constrained applications

Smartest STM32 83

Being smart is not about brain size, it is about connecting the right amount of neurons at the right time.

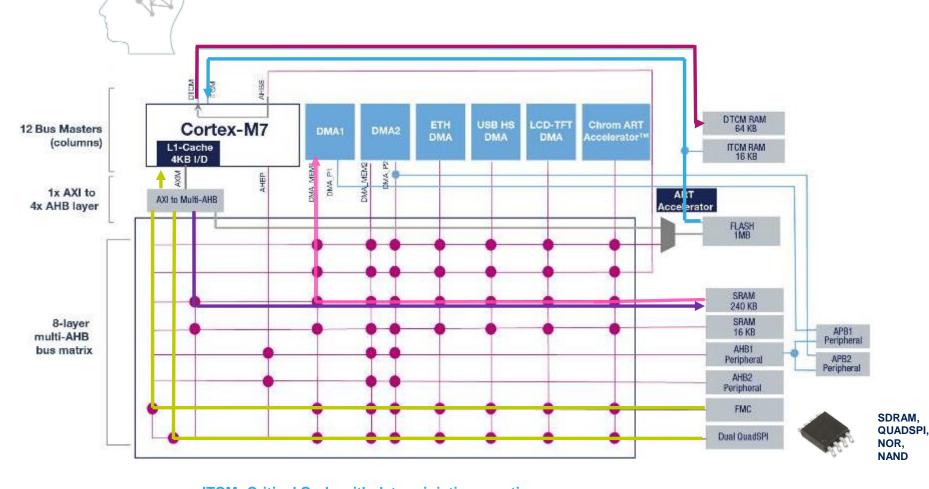
STM32 F7 is built on the new state-of-art ARM® Cortex®-M7 core

and

STM32 F7 is about ST's art of **combining** and interconnecting the right features around Cortex-M7 core, to deliver the smartest STM32 ever.

Smart-system architecture for performance

- STM32 F7 uses 2 independent mechanisms to reach 0-wait execution performance:
 - ST ART Accelerator[™] for internal Flash memory
 - L1 cache (4 Kbytes + 4 Kbytes instruction and data cache) for external (or internal) memories



- AXI and Multi-AHB bus matrix with dual GP DMA controllers and dedicated DMA controllers for Ethernet, USB OTG HS and Chrom-ART graphic HW acceleration,
- Large SRAM with scattered architecture:
 - 320 Kbytes including 240 Kbytes + 16 Kbytes on the bus matrix and 64 Kbytes of Data TCM RAM
 - 16 Kbytes of instruction TCM RAM
 - 4 Kbytes of backup SRAM

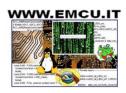
Smart Architecture – Use case 85

ITCM: Critical Code with deterministic execution Legend:

DTCM RAM: Critical real time data (Stack, heap ..) System SRAM: Concurrent data transfer CPU or DMA

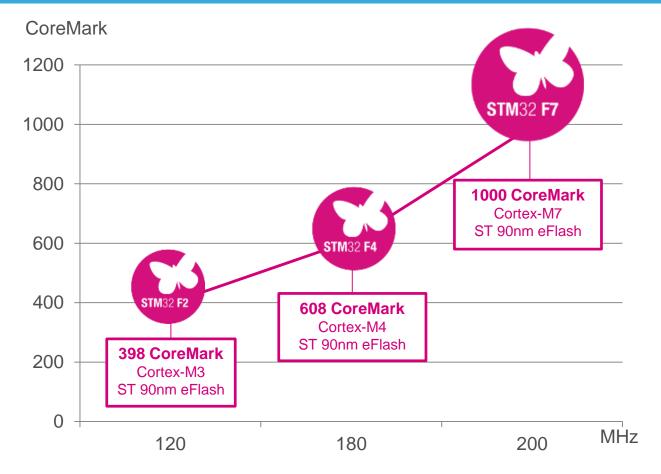
External Memories: Quad SPI, and FMC for data manipulation or code execution

Record Performance 86


...Unleashed by STM32 F7 Silicon

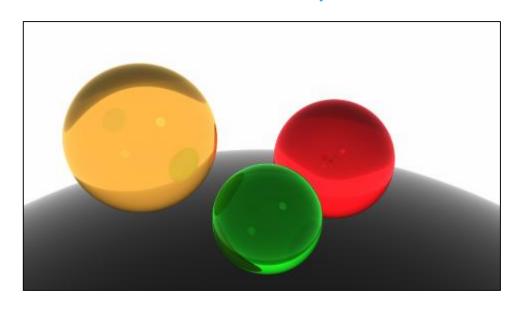
Benchmark	ARM® data		Measured on STM32 F7 Silicon	
	Cortex-M4	Cortex-M7	Executing from Embedded Flash	Executing from External memory
CoreMark/MHz	3.4	5	5	
DMIPS/MHz	1.25	2.14	2.14	

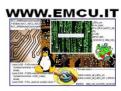
• And : ...


- Up to twice more DSP performance increase over Cortex-M4
- ARMv7-M architecture, 100% binary forwards compatibility from Cortex-M4
- STM32 F7 runs at $F_{CPU} = 200 \text{ MHz} \rightarrow 5 \times 200 = 1000 \text{ CoreMark}$

Record Performance 87

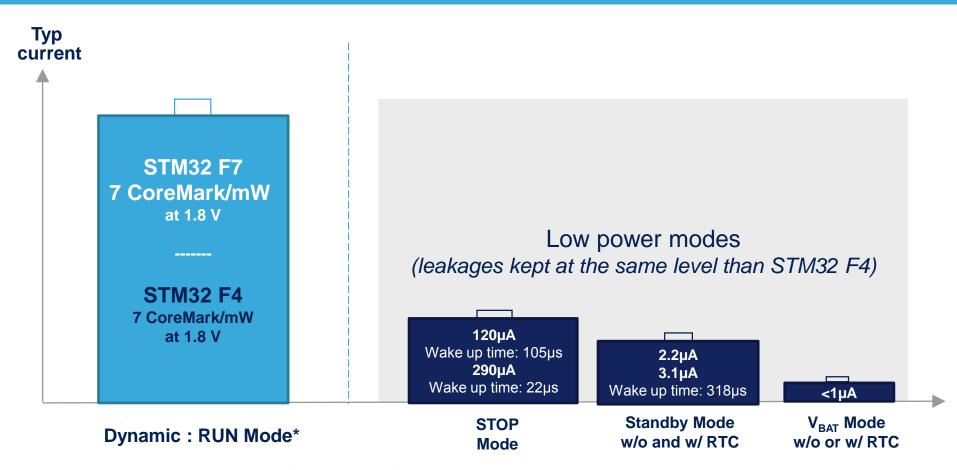
STM32 F4 = 608 CoreMark , STM32 F7 = 1000 CoreMark More maths, more signal processing = Up to 2x DSP performance vs STM32 F4 series

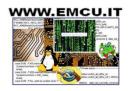



Heavy 3D-vectorial computation benchmark Demo from ST 1/2

- Heavy 3D-vectorial computation benchmark: Computes a complete picture from equations to generate a 3D picture.
 - Heavy vector computation based on floats (vector scaler, normalization...etc...)
 - Calculation of reflection and refraction on the objects of the scene
 - Highly recursive (each time an object is hit by a ray, new rays need to be computed for reflection, refraction and lighting)
 - Key performance enablers: FPU, ART Accelerator, L1 cache, memory interface

Ray tracing algorithms are perfect for benchmarking CPU computation efficiency




Power Efficient

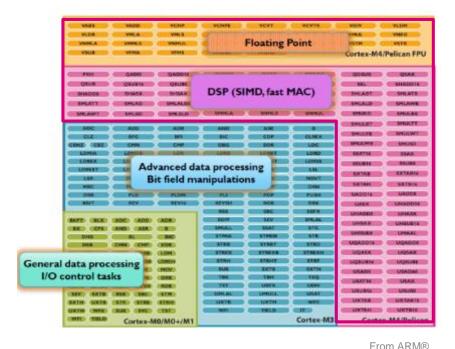
STM32 F7 power efficiency = STM32 F4 power efficiency STM32 F7 Boosts performance, but does not compromise on power efficiency

Legend: Measurements conditions depend on Room temperature *Run mode Conditions: CoreMark executed from Flash, peripherals OFF

Innovation Now 91

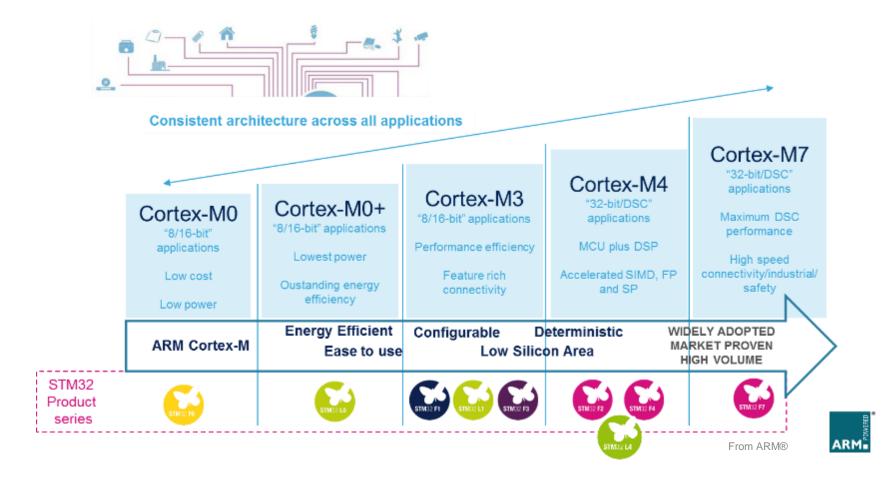
Right balance of innovation and time-to-market

- Our priority: deliver innovative, upward compatible, scalable STM32s on-time!
- STM32 F7 is designed around ST's mass-productionready 90nm embedded Flash platform, best in class
 - This 90nm e-Flash platform has enabled our STM32 F4 series to be world's highest performance Cortex-M based MCU (currently 608 CoreMark at 180 MHz). Refer to coremark.org
- Everyday MCU developers need to accelerate their innovation pace.
 - Developers have no time to optimize. All their skills must be devoted to innovation, differentiation, and creativity.
 - Computing, data/signal transfer and processing
 - Large embedded and external memory resources with fast access time, all packed inside a small single MCU.

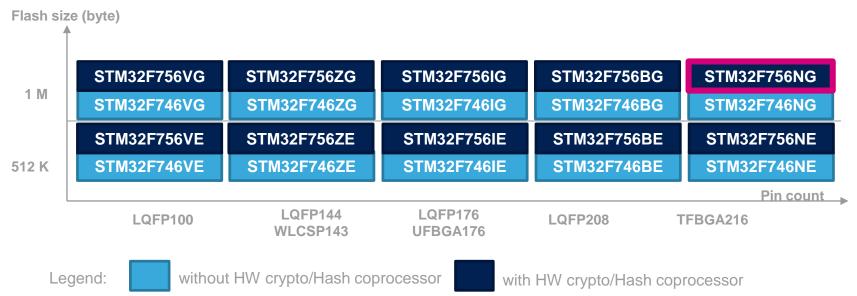


Enjoy 1000 CoreMark now!

Powerful and scalable instruction set 92


- Cortex-M7 has the same powerful instruction set as Cortex-M4
- MAC instructions are all single cycle
- SIMD instructions can work on 8-/16-bit quantities packed in to a 32-bit word
- Arithmetic can be signed/unsigned, saturating/unsaturating

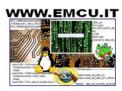
Cortex-M7 Microcontroller positioning

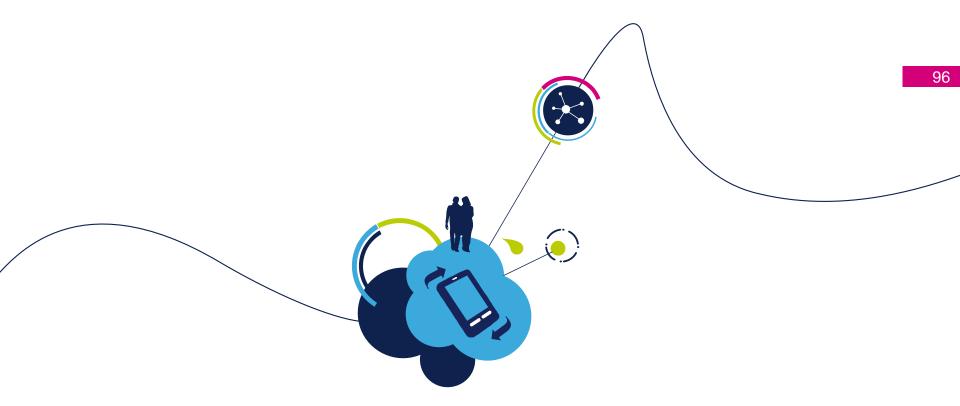


STM32 F7 portfolio

STM32 F7 block diagram

- NEW core: ARM Cortex-M7
- Up to 200 MHz, 428 DMIPS/1000 CoreMark
- Twice the DSP performance vs Cortex-M4 core
- New generation of Peripherals
- 2xSAI, 3xI2S half duplex, USB dedicated supply for 1.8 V operation, CEC, Quad SPI, SPDIF input, 4xI2C.
- Same packages as F429
 - WLCSP143
 - LQFP100,144,176,208
 - BGA 176, 216





1. Crypto/Hash processor on dericated devices

Thank you for your attention

