

ST solutions for efficient and robust motion control

Version 1.0

Agenda 2

Presentation

3 phase motors drives introduction

Field Oriented Control with STM32

- Application fit
- Performance
- Development Tools
- Evaluation Boards

ST VDE approved IEC65335 libraries

Scalar drives of 30 motors for AC IM

- Work often without any feedback devices (open-loop control)
- Low cost and easy-to-implement solution (8-bit MCU)
- On the other side
 - Developed torgue is not controlled directly (depends on load)
 - Transient response is not fast due to the predefined switching pattern of the inverter
- Adding a speed sensor (tachometer) and slightly increasing control scheme complexity, transients responses can be made faster and torque estimation possible

Scalar drives of 30 motors for PMSM

Dislike AC IM, always requires speed/position info

- Hall sensors
- Drawn from electrical quantities (e.g. phase voltage) feedback (sensor-less)
- Two families of drives available
 - Six-step
 - · Sensor-less solution is low cost (8 bit MCU): advanced ADC and timer peripherals are mandatory
 - Torque steadiness is not excellent \rightarrow noisy compared to other methods
 - Sinusoidal
 - Sensor-ed can be handled by 8 bit MCUs → low cost MCU
 - · Sensor-less solution for sinusoidal would require hard computation (not manageable by 8 bit MCUs) \rightarrow scalar sensor-less wouldn't be low cost:
 - Torque steadiness is better compared to six step \rightarrow more quiet
 - In both cases developed torgue is not accurately controlled

Six step drive - motor phase current

Sinusoidal drive - motor phase current

Field Oriented Control drive (FOC)

- FOC drive is also called *vector control* drive as the algorithm is based on a vector representation of the stator current, voltage and magnetic flux
- The method always requires rotor speed/position information
 - Measured through real sensors: Hall sensors, quadrature encoder, tachometer....
 - Computed indirectly from electrical quantities feedback (sensor-less)
- FOC scheme and rotor position estimation algorithm (where needed) must be executed at a rate comparable with PWM frequency
 - Higher computational power required compared to scalar drives \rightarrow higher cost vs scalar
 - 32bit MCU is optimal
- FOC drive ensures:
 - The torque steadiness typical of a sinusoidal control
 - Excellent performance in terms of accurate static and dynamic speed regulation and rapid response to sudden changes in load torque
 - Provide torgue control as an alternative to speed control

Sinusoidal drive - motor phase current

SILICA Field Oriented Control with STM32 (3ph brushless): \rightarrow From block diagram to implementation

STM32

Va

Vb

Vc

la

lb

SV

θs

a,b

6-channel **PWM** Timer

ADCs

Speed/position

Feedback TIMER

6xPWM

Fault

Vbus

Tachometer/Encoder/Hall sensor

Power stage

No present for sensorless algorithm

life.augmented

Hw peripherals

M

STM32 PMSM FOC SDK v3.x

STM32 PMSM FOC SDK v3.x:

is a Motor Control Software Development Kit for 3-phase Permanent Magnet Synchronous Motors (PMSM) based on Field Oriented Control (FOC)

- Key features:
 - Single/Dual simultaneous vector control (FOC)
 - Any combination of current reading topologies and/or speed/position sensors is supported
 - Wide range of STM32 microcontrollers families are supported
 - Full customization and real time communication through PC software ST MC Workbench
 - Wide range of motor control algorithms implemented for specific applications
 - Application example based on FreeRTOS
 - Increase code safety through
 - MISRA C rules 2004 compliancy
 - Strict ANSI C compliancy
 - New object oriented FW architecture (better code encapsulation, abstraction

and modularity)

FOC block diagram and possible configurations

- Speed position feedback is mandatory
- Three speed/position sensors are supported by the STM32 FOC SDK library:
 - Quadrature encoder
 - Expensive sensor, usually only in robotics applications
 - Hall sensors
 - Cheaper sensors, usually for application requiring full torque at zero speed
 - Sensor-less
 - Use electrical quantities (mainly current feedback) to estimate rotor position
 - Used for many applications not requiring full torque at zero speed or very low speed operations
 - (< 3-5% of nominal speed)

FOC block diagram and possible configurations

Current feedback is mandatory

- Three current sensing HW topologies:
 - 1 shunt resistor placed on the DC link
 - ST patented algorithm
 - Only one op-amp /shunt resistor \rightarrow lowest cost
 - Current reading algorithm may result in not accurate torque regulation
 - 3 shunt resistors placed in the three legs
 - Current reading accuracy: high
 - Best compromise cost / performances
 - 2 Isolated Current Sensors (ICS)
 - Not dissipative current sensing topology → mandatory when current exceed some tens Ampere
 - Expensive
 - Any possible configuration (2 motors x 3 current sensing x 3 speed sensors type) is supported by STM32 FOC SDK library

Features set, MCU support 10

	STM32F100x, STM32F0xx								
	1shunt	Flux Weakening	IPMSM MTPA			3shunt		Dual F0	C
	Feed Forward	Sensor-less (STO + PLL)	Sensor-less (STO + Cordic)			FreeRTOS F103, F2xx, F4xx		Max FC F103 ~25 F2xx T.B F4xx T.B	ikHz 3.D.
	Encoder	Hall sensors	Debug & Tuning			ICS		Max FOC dual	
	ST MC Workbench support	USART based com protocol add-on	Max FOC F100 ~11kHz F0xx T.B.D.			Max FOC ~25kHz		F103 ~20 F2xx T.B F4xx T.B	3.D.

FOC, cost optimized implementation STM32F100x Value Line

Target applications:

- All those applications where:
 - Requirements for dynamic performances are moderate
 - Quietness of sinusoidal current control (vs six steps drive) is valuable
 - Extended speed range is required
- Particularly suitable for pumps, fans and compressors

STM32F100 Value Line Block Diagram

- 32-bit ARM[®] Cortex[™]-M3 core
 - Up to 30 DMIPS at 24 MHz max
- 2.0 V to 3.6 V operation
- -40 to +105 °C
- Enhanced control
 - 16-bit 3-phase motor-control timer
 - 6x 16-bit PWM timers
- Advanced analog
 - Fast 12-bit 1.2 µs ADC
 - Dual-channel 12-bit DAC
- System integration
 - Internal 8 MHz RC oscillator
 - Built-in safe reset system

- STM32F100 FOC performance driving example 3phase PMSM
 - 1shunt/sensorless @20kHz PWM,10kHZ FOC
 - Motor Control code size is 15.82Kb
 - Motor Control RAM usage is 2.77Kb
 - FOC Total execution time is 65.22us (ADC ISR + TIM1 Update ISR)
 - FOC introduced CPU load is 65.2%
 - Total CPU load is ~70% (~60% at 8kHz FOC)

FOC <u>single</u> and <u>dual</u> motor drive - high performances STM32F103x, STM32F2x, STM32F4x

Target applications:

- Wide range from home appliances to robotics, where:
- Accurate and quick regulation of motor speed and/or torque is required (e.g. in torque load transient or target speed abrupt variations)
- CPU load granted to motor control must be low due to other duties

•

٠

٠

STM32F103 Performance Line Block Diagram

Temperature sensor

14

- System Flash memory Power supply 1.8 V regulator Up to 96-Kbyte SRAM 32-bit ARM[®] Cortex[™]-M3 core POR/PDR/PVD FSMC/ SRAM/NOR/NAND/CF/L Xtal oscillator 32 kHz + 3-25 MHz CD parallel interface Up to DMIPS at 72MHz Internal RC oscillators 84-byte backup data 40 kHz + 8 MHz 2V-3.6V Supply Clock control Connectivity -40 to +105 °C ARM Cortex-M CPU **Consumer electronics** RTC/AWU 24 to 72 MHz control (CEC) Systick timer From 16kB to 1MB flash memory 2x I2S ARM 2x watchdogs 2x |2C (independent and window) Enhanced control Nested vector 2x CAN 2.0B 37/51/80/112 I/Os interrupt controller (NVIC) USB 2.0 FS/0TG Cyclic redundancy check (CRC) Up to 3x 16-bit Advanced timer Ethernet MAC 10/100 JTAG/SW debug/ ETM with IEEE 1588 Up to 4x 16-bit PWM timers 3x SPI **SDIO** Advanced analog 5x USART AHB bus matrix LIN, smartcard, IrDA. Up to 3x fast 12-bit 1.2 µs ADC 12-channel DMA modem control System integration Internal 8 MHz RC oscillator Analog 2 -channel Control 12-bit DAC Built-in safe reset system 2x16-bit motor control 3x12-bit ADC **PWM** 21 channels 1 Ms/second Synchronized AC timer
 - STM32F103 FOC performance driving example 3phase PMSM

10x16-bit timer

- 1shunt/sensorless @20kHz PWM,16kHZ FOC
- Motor Control code size is 16.2Kb
- Motor Control RAM usage is 2.5Kb
- FOC Total execution time is 26.1 usec us (ADC ISR + TIM1 Update ISR)
- FOC introduced CPU load is 26%
- Total CPU load is ~30%

STM32F4 block diagram

- 168 MHz Cortex-M4 CPU
 - Floating point unit (FPU)
 - ART Accelerator TM
 - Multi-level AHB bus matrix
- 1-Mbyte Flash, 192-Kbyte SRAM
- 1.7 to 3.6 V supply
- RTC: <1 µA typ, sub second accuracy
- 2x full duplex I²S
- 3x 12-bit ADC
 0.41 µs/2.4 MSPS
- 168 MHz timers

- Notes:
- 1. HS requires an external PHY connected to the ULPI interface
- 2. Crypto/hash processor on STM32F417 and STM32F415

STM32 FOC <u>dual</u> motor drive Some performances figure examples

- STM32F103 HD, dual FOC
 - Motor 1, 3 shunt/sensorless @16kHz PWM/FOC
 - Motor 2, 3 shunt/sensorless @16kHz PWM, 16kHZ FOC.
 - Motor Control code size is 22.3Kb (below 1.5 times single motor case)
 - Motor Control RAM usage is 4.01Kb
 - FOCs introduced CPU load (including TIMx Update ISRs) is 80%
 - Total CPU load ~85%
- STM32F4xx HD, dual FOC
 - Motor 1, 3 shunt/sensorless @16kHz PWM/FOC
 - Motor 2, 3 shunt/sensorless @16kHz PWM, 16kHZ FOC.
 - Motor Control code size is 22.3Kb (below 1.5 times single motor case)
 - Motor Control RAM usage is 4.01Kb
 - FOCs introduced CPU load (including TIMx Update ISRs) is 37%
 - Total CPU load ~42%

STM32 – 6 product series 17

SDI0

2x I2S audio

Camera IF

2x I²S audio

Camera II

Up to 2x I2S

audio

Comparator

Ethernet

IEEE 1588

Ethernet IEEE 1588

Ethernet **IEEE 1588**

BOR

MSI

VScal

Common core peripherals and architecture:

			eries - High	performance	with DSP (S	TM32F405/415	5/407/417)			
Communication peripherals: USART, SPI, I ² C		168 MHz Cortex-M4 with DSP	Up to 192-Kbyte	Up to 1-Mbyte	2x USB 2.0 OTG	3-phase MC timer	2x CAN 2.0B	2			
Multiple general-purpose timers		and FPU	SRAM	Flash	FS/HS			1			
Integrated reset and brown-out warning		STM32 F2 series - High performance (STM32F205/215/207/217)									
Multiple DMA		Cortex-M3 CPU	128-Kbyte SRAM	1-Mbyte Flash	2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	2)			
2x watchdogs Real-time clock						01/102/103/10	5/107)				
Integrated regulator PLL and clock circuit		Up to 72 MHz Cortex-M3	Up to 96-Kbyte	Up to 1-Mbyte	USB 2.0 FS device	3-phase MC timer	2X CAN	U			
External memory interface (FSMC)	+	CPU	SRAM	Flash	OTG	NO UNICI	2.0B				
Dual 12-bit DAC		STM32 F0 s	eries - Entry	-level (STM3	2F051)						
Up to 3x 12-bit ADC (up to 0.41 µs)		48 MHz	Up to	Up to	2 obaco						
Main oscillator and 32 kHz oscillator		Cortex-M0 CPU	20-Kbyte SRAM	128-Kbyte Flash	MC timer	Comparator	CEC				
Low-speed and high-speed internal RC oscillators					STM32L151/						
-40 to +85 °C and up to 105 °C operating temperature range		32 MHz Cortex-M3 CPU	Up to 48-Kbyte SRAM	Up to 384-Kbyte Flash	USB FS device	Data EEPROM up to 12 Kbytes	LCD 8x40 4x44	С			
Low voltage 2.0 to 3.6 V or		ries - Wirele	Wireless (STM32W108)								
1.65/1.7 to 3.6 V (depending on series) 5.0 V tolerant I/Os		24 MHz	Up to	Up to	2.4 GHz	Lower MAC	AES				
Temperature sensor		Cortex-M3 CPU	16-Kbyte SRAM	256-Kbyte Flash	IEEE 802.15.4 Transceiver	Digital baseband	128-bit				

Crypto/hash

processor

and RNG

Crypto/hash

processor and RNG

AES

128-bit

STM32 – leading Cortex-M portfolio

life.augmented

MC Workbench

Quick setup of the library according customer needs

ST Motor Control Workbench

 PC software that reduces the design effort and time in the STM32 PMSM FOC firmware library configuration. The user through a graphical user interface (GUI) generate all parameter header files which configures the library according the application needs

Serial communication 20

Real time communication

- Using the ST MC workbench is possible to instantiate a "real time communication" to send start/stop commands or to set a speed ramp
- Debug or fine tuning motor control variables (like speed PI parameters) can be assessed using the advanced tab
- Plotting significant motor control variables (virtual oscilloscope) like target or measured motor speed

STM32 FOC SDK sources and docs 21

For further info about STM32 PMSM FOC SDK v3.x, please visit:

http://www.st.com/stm32

Downloads:

STM32 PMSM FOC SDK v3.0:

http://www.st.com/internet/com/SOFTWARE RESOURCES/SW COMPONENT/FIRMWARE/stm32 pmsm foc motorcontrol fwlib.zip

ST MC Workbenchv1.2.0:

http://www.st.com/internet/com/SOFTWARE RESOURCES/TOOL/CONFIGURATION_UTILITY/motorcontrol_workbench.zip

TN0516: Overview of the STM32F103xx/STM32F100xx PMSM single/dual FOC SDK V3.0

UM1052: STM32F103xx/ STM32F100xx/STM32F2xx/F4xx PMSM single/dual FOC SDK v3.2

UM1053: Advanced developers guide for STM32F100x/103x/2x/40x/41x MCUs PMSM

single/dual FOC SDK v3.2

www.st.com

STM32Fxx MC kit 22

- Two (34-pin) dedicated motor control connectors
- Encoder sensor input
- Hall sensor input
- Tachometer sensor input
- Current sensing mode:
 - 3 shunt resistors .
 - Single shunt

- Key Component
 - L6390D (Gate Drivers)
 - VIPer16LD (Power Supply down converter)
 - L7815ABV, L78M05CDT, LD1117S33TR (Voltage regulators)
 - STGP10NC60KD (IGBT)
 - TS391ILT, (Comparator)
 - M74HC14TTR (Logic)

Complementing MC starter kits STM8/32 Evaluation boards

Please visit http://www.st.com/evalboards or contact a local ST office

23

drive solutions

Complementing MC starter kits STM8/32 Evaluation boards

STEVAL-IHM023V2

- •3 x PWM smart driver L6390
- •1 converter based on Viper16
- 7 x IGBT power switch **STGP10NC60KD**

STEVAL-IHM021V2

- •3 x PWM smart driver L6390
- •1 converter based on Viper12
- 6 x MOSFET power switch **STD5N52U**

STEVAL-IHM032V1

- •3 x PWM smart driver: 2xL6392D and 1x L6391D
- •1 converter based on Viper12
- •6 x IGBT power switch: STGD3HF60HD

SLLIMM[™] (ST IPMs) based

Gate drivers & Power Transistors based

Please visit <u>http://www.st.com/evalboards</u> or contact a <u>local ST office</u>

Complementing MC starter kits Low Voltage Power Stages

STEVAL-IHM031V1

- Power stage up to 12/24V
- 3 x dual PowerMOSFETs STS8dnh3l
- •2 x PWM smart driver L6387E
- 1x step down converter L4976D

STEVAL-IEM003V1

Power stage up to 48V

- 3 x PWM smart driver L6388
- 6x LV Power MOSFET STV250N55F3
- 1x step down converter L4978D

Please visit http://www.st.com/evalboards or contact a local ST office

Complete 3ph motor drive solutions

Low voltage drives

High voltage drives

Please visit http://www.st.com/evalboards or contact a local ST office

IEC standard - Introduction

- IEC International Electro-technical Commission
 - WW authority, provides standardization of electric & electronic devices
- IEC60335-1 safety of household electronics appliances
 - Guarantee the security of the user for domestic appliances (and public places like shops, offices, not industry applications)
 - The appliance must remain safe in case of any component failure
 - Safety relies on electronics component? >> It must stay safe after two consecutive failures!
 - Safety relies on software? >> Class B or Class C required!
 - Definition of procedures, requirements and parts of MCU to be tested

Certification Bodies

• WW recognized test houses for software safety inspection (VDE, UL)

ST Class B software library focus 28

- IEC60335 Annex Q defines three safety classes for software
 - Class A: Safety does not rely on SW
 - Class B: SW prevents unsafe operation
 - Class C: SW is intended to prevent special hazards (dual MCUs)
- IEC60335 Annex T MCU compliance aspects related to
 - Micro specific HW (fixed by design - dual robust watchdog, dual internal RC oscillators, high impedance I/Os at reset, Flash ECC, SRAM parity)
 - Micro specific SW (self diagnostic of the core, memories, clocks, execution)
 - Application specific HW & SW (analog I/O, digital I/O, interrupts, communication, spec. peripherals)

ST code & end user certification

- ST pre-certified software is integrated into user code
- End-application is certified by any certification authority

Currently published FW packages 29

Packages certified by VDE at May 2010

STM8 family

- STM8S optimized package (Rev 1.0.2)*
- STM8L10x optimized package (Rev 1.0.2)
- STM8L15x optimized package (Rev 1.0.2)

*) covering all members of STM8S family, package was updated (certification planned in Q3/2012)

STM32 family

STM32 package (Rev 2.0.0)*

*) based on standard peripheral FW library Rev 3.3.0, no support of connectivity and XL devices (certification is planned in Q3/2012 to be based on the FW library Rev 3.5.0 and covering connectivity & XL devices + all new incoming devices)

*) STM32 package is available upon request thru local ST sales offices

Available documentation

- AN3181 for STM8
- AN3307 for STM32

Agenda 30

Presentation

Stepper Motor Control

- Performance
- Evaluation Boards

STm new stepper motor control

L6472 L6474 L6470 Dspin current mode Easyspin Dspin voltage mode

New Spin...

product	Peculiar features	Operating range	Integrated mosfet	Common features	
L6470	Up to 128 microsteps Voltage mode operation Sensorless Stall Detection		3Arms (7A peak)	 Programmable speed profile (*) Programmable positioning (*) 8bit 5Mhz SPI 	
L6472	Up to 16 microsteps Current mode Advanced phase current control Accurate internal current sensing	8V – 45V	$R_{DS,ON} =$ 0.28 Ω Integrated Current Sensing	 Oblic SMI2 SP1 interface (Daisy Chain compatible) Integrated 16MHz oscillator 	
L6474	Up to 16 microsteps Current mode with adaptive decay		(no ext.shut)	 Integrated 5bit ADC Integrated 3V 	
L6480	Up to 128 microsteps Voltage mode operation Sensorless Stall Detection Integrated 15V/7.5V voltage regulator Fully programmable gate driving Embedded miller clamp	7.5V – 85V	NO	 Over Current, Over Temperature and Under Voltage protections PowerSO (ES) and HTSSOP 	

(*) not available for L6474

dSPIN

Digital. Accurate. Versatile.

L6472: the new State of the Art in µstepping Drivers

dSPIN

L6472 Monolithic Digital µstepping current mode Driver

Supply voltage 8V – 45V
3Arms (7A peak)
R_{DS,ON} = 0.28 Ω
Integrated current sensing (no external shunt)
Up to 16 microsteps
Innovative current control

Avr phase current control
Adaptative decay

Programmable speed profile
Programmable positioning
8bit 5Mhz SPI interface

(Daisy Chain compatible)

Integrated 16MHz oscillator
Integrated 5bit ADC
Integrated 3V voltage regulator
Over Current,

•Over Temperature

Under Voltage protections

PowerSO and HTSSOP

LGAT N

Intelligence integration

Intelligence integration

with dSPIN ...

- System is heavily simplified
- No more dedicated MCU to perform speed profile and positioning calculations
- A lot less passive components

A complete digital interface to MCU

- The fast SPI interface with daisy-chain capability allows a single MCU to manage multiple devices
- Programmable alarm FLAG open drain output for interrupt-based FW In daisy-chain configuration, FLAG pins of different devices can be or-wired to save host controller GPIOs
- BUSY open drain output allows the MCU to known when the last command has been performed In daisy-chain configuration, BUSY pins of different devices can be or-wired to save host controller GPIOs
- BUSY Can be used to feedback the μ step clock to the μ C (programmable # of μ steps

37

SILICA Positioning and speed profiles: Leave them to dSPIN!

MCU sends **dSPIN** high level commands...

Free-run \rightarrow run at constant speed Positioning \rightarrow reach the desired position

... and **dSPIN** does the tricky job!

dSPIN L6472 : Many Commands

And : GoHome, GoMark, Run, Move, SoftStop, HardStop, SoftHiz, ReleaseSW.....

dSPIN What is a decay?

Coil with inductance L

Inductors store the kinetic energy of moving electrons in the form of a magnetic field.

The total energy (or work) done in establishing the final current I2 in the inductor from the starting current I1 is :

$$W = L \int_{11}^{12} i \, di = \frac{1}{2} L (12 - 11)^2 \quad \text{(assuming i linear)}$$

A decay is a way to remove the energy W from the coil

Why a decay : for stable current

Current is applied with a chopping technique

dSPIN Why a decay : Falling steps

The energy must removed from the inductance when you switch current level1 to a lower current level2 \rightarrow decay is necessary

Evolved current control

- Automatic selection of the decay mode Stable current control in microstepping
- Slow decay and fast decay balancing Reduced current ripple
- Predictive current control
 Average current control
- Automatic OFF time adjustment Fixed switching frequency

Challenges to perform the right decay

The quantity of energy to removed in decay1 and decay2 are different \rightarrow must choose the right timing and speed decay

Challenges to perform the right decay

dSPIN

Current level

Timing PWM to control current

Address [Hex]	Register name	Register function			
h0F	TON_MIN	Minimum ON time			
h10	TOFF_MIN	Minimum OFF time			
h18	CONFIG	Bit10-14 : TSW			

TON Must be > TON_MIN

Current level

In stable current, TON and TOFF are constant

life.gugmented

dSPIN

Auto-adjusted Decay w/ one Fast Decay

Target Current level

(*) No predictive control

Auto-adjusted Decay w/ multiple fast decay

Target Current level

(*) No predictive control

Fast Decay Mode during Falling Step

h18

CONFIG

Bit10-14 : TSW

dSPIN Predictive current control

The predictive current algorithm allows to control the average current.

The OFF time is regulated according to the TSW parameter.

Programmable output slew-rate

Four output slew-rate values can be selected via SPI in order to fit the application EMI / Power dissipation tradeoff.

Integrated 3V voltage regulator

Device logic supply management is also flexible!

- 1. Supply IC logic through the internal 3V regulator
- 2. Supply IC logic using an external 3V3 supply
- 3. Supply external components (e.g. $a \mu C$) through the internal voltage regulator

INTERNAL voltage regulator

EXTERNAL voltage regulator

dSPIN Daisy chaining

easySPIN - L6474

Flexible innovative microstepping motor driver⁵⁴

- •Programmable non dissipative over current (on all power MOS)
- •Two levels over temperature protection
- •UVLO

life.augmented

easySPIN - L6474 Speed Profiles using STCK

L6472 : Acceleration and Deceleration are linear

L6470: dSPIN

ST motor Drivers are moving the future

L6470 Monolithic Digital µ stepping voltage mode Driver

 Supply voltage 8V – 45V •3Arms (7A peak) •R_{DS,ON} = **0.28** Ω •Integrated Current Sensing (no external shunt) •Up to 128 microsteps Voltage mode operation Sensorless Stall Detection Programmable speed profile Programmable positioning •8bit 5Mhz SPI interface (Daisy Chain compatible) Integrated 16MHz oscillator •Integrated 5bit ADC Integrated 3V voltage regulator Over Current, Over Temperature and Under Voltage

•HTSSOP and POWERSO packages

protections

life.guamentec

57

Voltage mode vs. Current mode

dSPIN

Current mode principle:

 System tries to impose phase current applying a switching voltage.

It is a **closed-loop** approach.

Voltage mode principle:

System applies a sinusoidal voltage to motor and phase.
 Phase current is not directly controlled.
 It is a open-loop approach

It is a **open-loop** approach.

Voltage mode vs. Current mode

dSPIN

life.augmented

Voltage mode vs. Current mode

Voltage mode vs. Current mode

- Current mode systems strain with several tricks (e.g. mixed decay) trying to find a solution to follow adequately the sinusoidal profile of the current
 - Results are generally quite poor, require fine tuning and are tradeoff between adequate profile and current ripple

Voltage mode intrinsically uses the best decay style

- Current profile is very smooth
- No compromise on current ripple. No mixed decays
- No tuning of the decays

Best decay is always used with each motor

dSPIN Voltage mode: drawbacks and solutions

- Back-Electro Motive Force heavily influences voltage to current relation
- Windings applied voltages are perturbed by supply voltage fluctuations
- Phase resistances vary with temperature

 Effective and flexible BEMF compensation system

 Supply voltage compensation though integrated 5bit ADC

 Phase resistance compensation register

dSPIN BEMF compensation

Without BEMF compensation

With BEMF compensation

dSPIN BEMF compensation

According to motor conditions (acc/deceleration, constant speed, hold) a different torque, and then current, could be needed

d SPIN logic switches from different compensation parameters sets according to motor status

BEMF compensation waveform

SALRSN!!

Effective appliedtorque

detent tarque

Supply voltage compensation

Phase resistances variation comp.

dSPIN Sensorless stall detection

Using integrated current sensing and the adjustable STALL current threshold a cheap and easy stall detection can be implemented

STALL! BEMF is null and current is suddenly increased Normal operation

dSPIN L6470 : Many Commands

And : GoHome, GoMark, Run, Move, SoftStop, HardStop, SoftHiz, ReleaseSW.....

Integrated position registers allows to map up to

32768 full steps (@128 µstep operation)

equivalent to about 164 rotations (200 step/rotation motor)

dSPIN Register map

Address [Hex]	Register nam	Register function		Len. [bit]	Reset Hex	Rese Value		Remarks(³)
h01	ABS_POS	Current Position	Absolute position register can be set		0		R, WS	
h02	EL POS	Electrical Positic				0		R, WS
h03	MARK	Mark Position	•	22	000000	0		R, WS, WR
h04	SPEED	Current Speed	Motor electrical position (current microstep) can be set		0 step/tick (0 step/s)		R	
h05	ACC	Acceleration			125.5e-12 step/tick ² (2008 step/s ²)		R, WS	
h06	DEC	Deceleration			125.5e-12 step/tick ² (2008 step/s ²)		R, WS	
h07	MAX_SPEED	Maximum Speed	Speed profile parameters			6 step/tick 3 step/s)	R, WS, WR	
h08	MIN_SPEED	Minimum Speed)/tick p/s)	R, WS	
h15	FS_SPD	Full Step Speed	Torque control parameters		150.7e-6 step/tick .7 step/s) ·V _s		R, WS, WR	
h09(²)	KVAL_HOLD	Holding K_{VAL}					R, WS, WR	
h0A(²)	KVAL_RUN	Constant Speed K_{VAL}		8	29	0.16	V _S	R, WS, WR
h0B(²)	KVAL_ACC	Acceleration Starting	ng K _{VAL} 8 29		29	0.16·V _s		R, WS, WR
h0C(²)	KVAL_DEC	Deceleration Starting I	K _{VAL}	8	29	0.16 [.]	V _S	R, WS, WR

dSPIN - *easy*SPIN Tools & Documentations

- Sales Codes
 - L6470H -Tray
 - L6470HTR -Tape&Reel
 - ES available on L6470PD
- Product Page http://www.st.com/dspin
 - Data Sheet
 - Application Note (AN3103)
 - d SPIN Evaluation Tool Software
 - Evaluation Board: EVAL6470H
 - Control boards <u>STEVAL-PCC009V2</u> (and –V1)
 - d SPIN Firmware Library
 - Available on http://www.st.com/dspin

dSPIN - *easy*SPIN Tools & Documentations

- Sales Codes
 - L6472H -Tray
 - L6472HTR -Tape&Reel
 - ES available on L6472PD
- Product Page <u>http://www.st.com/dspin</u>
 - Data Sheet
 - Application Note
 - d SPIN Evaluation Tool Software
 - Evaluation Board: EVAL6472H
 - Control boards <u>STEVAL-PCC009V2</u> (and –V1)
 - d SPIN Firmware Library
 - Available on <u>http://www.st.com/dspin</u>

dSPIN - *easy*SPIN Tools & Documentations

life.augmented