
 

RTOS overview 
 

Basic concepts and benefits 



Real-time operating systems 

2 

Embedded applications typically have two design concepts: 

 ‘main’ Loop ( Infinite ) 

 Each ‚task‛ called from main loop sequentially 

 Interrupts perform time-critical jobs 

 Stack usage un-predictable 

 User manages task interactions 

 

 Using a Real-Time Kernel 

 Allows application to be separated into independent parallel tasks 

 Message passing eliminates critical memory buffers 

 Each task has its own stack area 

 Interrupt communication with event flags and message 



Real-time operating systems 

3 

• A real-time operating system (RTOS) is an operating system (OS) intended to serve 
real-time application requests. 

• A key characteristic of a RTOS is the level of its consistency concerning the amount of 
time it takes to accept and complete an application's task; the variability is jitter.[1] A 
hard real-time operating system has less jitter than a soft real-time operating system. 
The chief design goal is not high throughput, but rather a guarantee of a soft or hard 
performance category. A RTOS that can usually or generally meet a deadline is a soft 
real-time OS, but if it can meet a deadline deterministically it is a hard real-time 
OS.[citation needed] 

• A real-time OS has an advanced algorithm for scheduling. Scheduler flexibility 
enables a wider, computer-system orchestration of process priorities, but a real-time 
OS is more frequently dedicated to a narrow set of applications. Key factors in a real-
time OS are minimal interrupt latency and minimal thread switching latency, but a 
real-time OS is valued more for how quickly or how predictably it can respond than 
for the amount of work it can perform in a given period of time.[2] 

 

Source : wikipedia 

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Task_(computing)
http://en.wikipedia.org/wiki/Jitter
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Deterministic_algorithm
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Interrupt_latency
http://en.wikipedia.org/wiki/Thread_switching_latency
http://en.wikipedia.org/wiki/Real-time_operating_system


Real-time operating systems/2 

4 

The RTOS determines which applications should run in what order and how 
much time should be allowed for each application before giving processor 
access to another process: 

• manages the sharing of internal memory among multiple tasks. 

• handles input and output to and from attached hardware devices, such as 
serial ports, buses, and I/O device controllers. 

• sends messages about the status of operation and any errors that may have 
occurred 

 

Source : Quadros Systems 



Why use an RTOS? 

5 

A well-designed RTOS provides a number of tangible benefits to the 
developer. It  

• abstracts away the complexities of the processor, 

• provides a solid infrastructure constructed of rules and policies that 
provide consistency and repeatability 

• simplifies development and improves developer productivity by 
utilizing high level kernel objects to easily handle complex functions 

• integrates and manages resources needed by communications stacks and 
middleware (TCP/IP, USB, SDIO, CAN, FAT and Flash file systems, etc.) 

• optimizes use of system resources and improves product reliability, 
maintainability and quality 

An RTOS can bring all those elements together into a platform that allows 
the application developer to begin development at a much higher point, 
enabling a shorter time-to-market with higher reliability and lower risk. 

 

             Source : Quadros Systems 



6 



Which RTOS? 

7 

HARD and SOFT real-time 
 

• Soft RTOS 

In applications involving soft real-time, timing constraints of those elements 
are looser than those of hard real-time to the extent that even a failure of a 
task to meet its time requirements still provides some value to the 
application. In essence, the soft real-time task does not offer a guarantee to 
meet its time constraint, but only that it will make a ‚best effort‛ attempt to 
do so. 

– in SOFT real-time systems, tasks are performed by the system as fast as possible, 
but the tasks don’t have to finish by specific times 

 

 

Source : Quadros Systems 



Which RTOS? /2 

8 

HARD and SOFT real-time 
 

• Hard RTOS 

A task that has operational time constraints that must be met in order to avoid 
a catastrophic failure is called a hard real-time task. A system can have 
several such tasks and the key to their correct operation lies in scheduling 
them so that they meet their time constraints. That necessarily involves a 
priori setting of priorities to them and then analyzing each one with respect 
to the others to determine if a feasible schedule exists. A feasible schedule in 
a hard real-time system is one in which all tasks meet their known time 
constraints. In short, the basic property of the hard real-time elements of a 
system is that they are predictable.  

– in HARD real-time systems, tasks have to be performed not only correctly but on 
time 

 

Source : Quadros Systems 



Popular RTOS’es 

9 

 

 

 

 

This page has been left empty on purpose 

 

 

 



TM 

 
 
 

Contact Us 

• Italy 

Fenway Embedded Systems  
Via Don Giovanni Minzoni, 31  
20010 Arluno (MI) - Italy 
Tel. +39 02 97310120 
Email: sales@fenwayembedded.com 
Web: www.fenwayembedded.com  
 

• Headquarter 

Atollic  AB 
Science Park Jönköping 
Gjuterigatan 7  

SE-553 18 Jönköping – Sweden 
Email: sales@atollic.com  
Web: www.atollic.com  
 


