

ST's new strategy: Leadership in... SILICA

Source : WSTS

ST strategy for Power

Smart Power Conversion

Advanced Solutions on Power Management

ST has the solution for...

DC/DC conversion

ST lands on Mars

Mars - 06-Aug-2012: The Mars Rover Curiosity touched down on the surface of Mars this morning. The first images from Mars have been received on earth. Curiosity, the carsize, one-ton rover is a well-equipped mobile laboratory. ST provides several components aboard the rover. Here are just a few: Diverse logics IC's (Radhard 54ACMOS, CMOS 4000B); Low Drop Voltage regulators (RHFL4913); and, Bipolar transistors

ST offers a complete portfolio of high performance LDOs, with state-of-the-art figures on the key merit parameters

Low voltage (5.5V), Low current (<300mA)

Main benefits

- Higher efficiency, lower power dissipation
- Fast transient response
- Low quiescent current
- Good dynamic performances (PSRR and Noise)
- SOT23-5L, SC70, DFN1.2x1.3 and CSP packages

Applications

- Low power µC supply (STM32, etc)
- Cell Phones and Cordless
- Game consoles and accessories
- Battery powered equipments

Ultra Low DropOut:

Low voltage (5.5V), Medium current (>300mA)

Main benefits

- Higher efficiency, lower power dissipation
- Fast transient response
- Low quiescent current
- Good dynamic performances (PSRR and Noise)
- DFN 3x3 and 4x4, DPAK and PPAK packages

Applications

- DSP and FPGA power supply (STM32, etc)
- TV and STB
- Computer and Data storage
- Game consoles and accessories
- Telecom infrastructure

Ultra Low DropOut:

LD39200 – 2A high performance LDO

LD39200

2A Ultra Low dropout ,Low Voltage Very low noise – Very high PSRR With Reverse current protection in 3x3 DFN6 and 4x4 DFN8 Packages

Main benefits and Applications

- This high performance, medium power LDO is designed for demanding applications.
- It offers a best-in-class dropout performance without the need of additional biasing voltage.
- It is designed to provide the maximum efficiency in those environment where DC-DC switching regulation is not allowed.

Typical applications are

- Digital IC Power Supply
- Telecom infrastructures
- Consumer and Industrial Equipments POL
- FPGA, DSP, ASIC dedicated Power Supply

- Very low startup voltage: from 1.25 to 6 V
- Very low output voltage: from 0.5V
- Guaranteed output current: 2A
- Ultra low drop: 130 mV typ. At 2A
- High PSRR: 70 dB @ 1kHz, 40 dB @ 1MHz
- Very low noise: 45µV_{RMS}/V_{OUT}
- Low quiescent current: 100 µA typ @ no load
- Enable and Power Good functions
- Reverse current protection
- Packages: DFN6 3x3 and DFN8 4x4

SILICA | The Engineers of Distribution

Low quiescent current LDOs:

the Battery's Ally

Key Features

 Ultra low quiescent current (lq) (down to 1.4µA)

- Wide range of miniaturized packages
- Output current from 50 to 150mA
- Extended input voltage range (up to 24V on ST715)

Main Benefit

- Maximize battery life
- Reduce standby power consumption
- Minimized PCB area occupation
- Easy design and implementation

Applications

This family of LDOs is designed for those applications where power consumption is at a premium:

- Medical/Health care equipments
- Smoke detectors and alarms
- Real-time clock backup power
- Electronic sensors
- Portable Consumer

Low quiescent current LDOs:

the Battery's Ally

Key Benefits

- Maximize battery life
- Reduce standby power consumption
- Wide VIN range offer, for maximum Flexibility
- LD39130: Automatic Green Mode operation

- STLQ50: SC70 (2x2 mm2)
- STLQ015: SOT666 (1.6x1.6 mm2)
- ST715: SOT23-5L (2x2 mm2) & DFN8 (3x3 mm2)
- LD39130: CSP4 bumps $(0.69 \times 0.69 \text{ mm}^2)$ & DFN6 - 1.2x1.3 mm2

SILICA | The Engineers of Distribution

Low quiescent current LDOs:

the Battery's Ally

LD39130S

New 300mA High performance LDO With automatic GREEN MODE in 0.69x0.69 CSP 4 bumps and DFN6L 1.2x1.3

- Input voltage: from 1.4 to 5.5 V
- Guaranteed output current: 300 mA
- Automatic green mode for low consumption at light loads:
 - 1 µA typ in low power mode
 - 55 µA typ @ 300 mA load
 - 0.1 µA typ in off mode
- High PSRR: 70dB @ 1kHz, 65dB @ 10kHz
- Very low dropout voltage: 300 mV typ @ 300 mA
- Internal soft start
- Packages:

CSP 4 bumps 0.69 mm x 0.69 mm

DFN 6 leads - 1.2 mm x 1.3 mm

Stand-by power reduction

STLQ015 150mA Ultra low quiescent current LDO In SOT666 1.6x1.6 package

- ov power action
 - Input Voltage from 1.5V to 5.5V
 - Guaranteed output current: 150 mA
 - Ultra Low and constant quiescent current:
 - 1 μA (typ) at no load
 - 1.4 μA (typ) at 150 mA load
 - I nA (typ) in OFF mode
 - Logic controlled enable pin
 - Internal Current and Thermal Limit
 - Compatible with ceramic capacitor
 - Package:

SOT666-6leads 1.6 mm x 1.6 mm

Low noise & High PSRR LDOs:

Make your DC more silent

Key Features

- Ultra low noise (down to 6.3µVRMS)
- Very High PSRR (up to 92dB)
- Fast transient response
- Low quiescent current (20µA)
- Wide range of miniaturized packages

Main Benefits

- Excellent output signal quality
- Minimized PCB area occupation
- Easy design and implementation
- Low current consumption

Applications

This family of LDOs is designed for noise sensitive applications:

- RF modules, LNA, IF and VCO
- Signal conditioning, ADC
- Instrumentation, Medical equipments
- DC-DC low noise post-regulation
- Mobile phones and tablets

Low noise & High PSRR LDOs:

Make your DC more silent

It is perfect as a post-regulator for noisesensitive application, as well as a simple linear power supply for low noise-battery powered devices.

Low noise & High PSRR LDOs:

Make your DC more silent

LD59015 Very low noise – very high PSI 150mA LDO in 2x2 SC-70 Pa **High PSRR**

- Input voltage: from 2.3 to 5.5 V
- Guaranteed output current: 150 mA
- Very low noise: 20 µVRMS/VOUT from 10 Hz to 100 kHz
- Very high PSRR: 76 dB up to 10kHz
- Low quiescent current: 31 µA typ @ no load
- Logic controlled enable pin
- Very low dropout voltage: 150 mV typ @ 150 mA

Low noise & High PSRR LDOs:

DC-DC conversion is everywhere

life.augmented

New DC-DC for Industrial

L6986 positioning

- **Compact & Efficient** solution for DC-DC buck
 - Integrated synch. MOSFET allows saving external diode
 - Up to 90% Efficiency at high loads
- Best-in-class quiescent current for minimum stand-by & high efficiency at low load
 - Max 30uA consumption at no load
 - > 80% Efficiency from 10mA-load
- Adjustable parameters for maximum flexibility
 - F_{SW} (up to 2MHz → reduce passive components size)
 - Soft Start
 - PG with adj. Delay

	L597x	L7985/6	L6986
Input Voltage (V)	4.4 to 36	4.5 - 38	4 - 38
I _{OUT} (A)	Up to 3	2/3	2
Package	SO8 HSOP8	DFN 3x3-10L HSOP8	HTSSOP16 DFN planned
Synchronous Rectification	No	No	Yes New
R _{DSon} (typ. mΩ)	250	200 (p-channel)	180 (HS p-ch.) 150 (LS)
fsw (kHz)	250 or 500	Adj.: 250 to 1000	Adj.: 250 to <mark>2000</mark>
Soft Start	No	Yes	Yes, adjustable
Synchronizatio n Capability	Yes	Yes, with phase shift 180°	Yes, with phase shift 180°
Ceramic Cout	Not recommended	Yes	Yes
Power Good	od No No		Yes We
Low lq	No	No	Yes, 30 µA

- V_{IN}: 4V 38V
- V_{OUT} : 0.85V V_{IN}
- I_{OUT}: 2A
- F_{SW}: adj. (250kHz 2MHz) + synch.
 capability
- Synchronous rectification
- Low load settable behavior:
 - Low consumption mode $(I_Q = 30\mu A)$
 - low noise mode (where high Vout precision is required also at low load)
- Inhibit & low shut-down current (5µA)
- Power Good with adj. delay (Reset for μC
- Adjustable soft start
- V_{BIAS} : self-supply to improve efficiency at light loads

- Buck-boost also supported (pos. & neg.)
- Ceramic C_{OUT} allowed
- Protections: OC, OV and thermal
- Package: HTSSOP-16L

ES Available (final silicon) MP Q2 2014

- 61V input
 - Suitable for Fail Safe Applications
 - Suitable for 48V bus
- Power passive components optimization thanks to adjustable current limit
- Digital I/O L7987x Sensors Power supply line 12 V - 24 V L798x ST1S14 Analog output modules 1.. Analog output modules #

High Input Voltage for High Reliability

- Adjustable parameters for maximum flexibility
 - F_{SW}
 - Soft Start

HTSSOP16 (R_{TH} = 40 °C/W)

	V _{IN} (V)	I _{OUT} (A)	PG
L7987	61	3	YES
L7987L	61	2	YES

٧...

L7987/L: Tech features

- V_{IN}: 4.5V 61V
- V_{OUT}: 0.6V ~ V_{IN}
- I_{OUT}:
 - up to 3A (L7987)
 - up to 2A (L7987L)
- F_{SW}: adj. (250kHz 1.5MHz) + synch. capability
- Adjustable current limit up
- Enable & Power Good
- Adjustable soft start
- Low shut-down current (5µA)
- V_{BIAS} to improve efficiency at light loads

ES Available (final silicon) MP Q2 2014

- Ceramic C_{OUT} allowed
- Protections: OC and thermal
- Package: HTSSOP-16L

Focus DC-DC for 12V bus

ST1S50

- **Compact &** Efficient solution for 4A DC-DC buck
 - Up to 93% Efficiency at high loads
 - Integrated synch. MOSFET allows saving external diode
- Reduced Quiescent Current to optimize low load efficiency
 - > 87% Efficiency from 10mA-load
- Increased Flexibility thanks to
 - Adj. Soft start
 - Power Good (ST1S50/1)

NEW	V _{IN} (V)	I _{out} (A)	max Ι _Q (μΑ)	F _{sw} (kHz)	Compensation	PG	Adj. SS	Package
ST1S50	18	4	600	500	External	YES	YES, shared with EN	DFN3x3-10L

SILICA | The Engineers of Distribution

V_{IN}=12V V_{OUT}=5V **η > 90%** from 20-mA load

V_{IN}=12V V_{OUT}=3.3V **η > 87%** from 20-mA load

DC-DC list of demoboards

DC-DC	V _{IN} (V)	I _{оυт} (А)	Topology	Order code	
L7987	Up to 61	Up to 3	HTSSOP16	STEVAL-ISA152V1	NEW
ST1S14	Up to 48	Up to 3	HSOP8	STEVAL-ISA104V1	M/Z
L6986	Up to 38	Up to 2	HTSSOP16	EVAL6986	NEW
L7985	Up to 38	Up to 2	DFN3x3-10L	STEVAL-ISA097V1	MZ
L7985A	Up to 38	Up to 2	HSOP8	STEVAL-ISA098V1	
L7986	Up to 38	Up to 3	DFN3x3-10L	STEVAL-ISA099V1	
L7986A	Up to 38	Up to 3	HSOP8	STEVAL-ISA100V1	
L6984	Up to 36	Up to 0.35	DFN4x4-10L	EVAL6984	
L6984A	Up to 36	Up to 0.35	DFN3x3-10L	EVAL6984A	NE
ST1S40IPHR	Up to 18	Up to 3	HSOP8	STEVAL-ISA082V1	
ST1S40IPUR	Up to 18	Up to 3	DFN4x4-8L	STEVAL-ISA083V1	
ST1S40DR	Up to 18	Up to 3	SO8	STEVAL-ISA084V1	
ST1S41IPHR	Up to 18	Up to 4	HSOP8	STEVAL-ISA107V1	
ST1S41IPUR	Up to 18	Up to 4	DFN4x4-8L	STEVAL-ISA108V1	
ST1S31PUR	Up to 5.5	Up to 3	DFN3x3-8L	STEVAL-ISA069V1	
ST1S31DR	Up to 5.5	Up to 3	SO8	STEVAL-ISA070V1	
ST1S32PUR	Up to 5.5	Up to 4	DFN4x4-8L	STEVAL-ISA068V1	

REMEMBER: also Automotive versions

Digital power conversion

World's first digital controller for lighting & NOT ONLY!!!

FEATURES

- 6 PWMs easy configurable to achieve up to 1.3 ns PWM resolution
- customizable algorithms enable higher conversion efficiency
- 4 analog comparators & analog-to-digital converters (ADCs)
- Flash and E²PROM with "read while write" (RWW) and error correction code (ECC)
- Internal 96 MHz PLL

TOOLS

- STEVAL-ILH007V1 150W HID digital ballast NEW!
- STEVAL-ILL057V1 200W 4-LED strings
- STEVAL385LEDPSR 100W LED street lighting NEW!
 - · configurable solution driving a single dimmable high brightness LED string
 - primary side regulation
 - Compliant with physical communication interfaces: DALI, insulated 0-10, Wi-Fi, power line modems, Bluetooth[®] and Zigbee[®].

APPLICATIONS

- LED street-lighting
- LED power supplies
- HID lighting
- Digital power conversion

SILICA | The Engineers of Distribution

- SIX configurable PWM State Machine Event Driven (SMED) 10.4ns resolution (up to 1.3ns using automatic dithering)
- 8 channels 10 bit ADC with programmable op amp GAIN, 2.4 µs conversion time,
- 4 Analog Comparators and 6 fast digital inputs synchronized with 96MHz clock
- ST core based (up to 20 MIPS)
 - 16-bit/8-bit and 16-bit/16-bit divisions
 - Faster 8-bit*8-bit multiplication, signed arithmetic operation
- 3V to 5.5V DC voltage supply (IC performances are optimized for 3.3V)
- -40 °C to 105 °C temperature range
- TSSOP38

- SIX configurable PWM State Machine Event Driven (SMED) 10.4ns resolution (up to 1.3ns using automatic dithering)
- 4 Analog Comparators and 6 fast digital inputs synchronized with 96MHz clock
- 8 channels 10 bit ADC with programmable op amp GAIN resolution), 2.4 µs conversion time,

STLUX385: Connection Switch Matrix SILICA

Input Events

SILICA | The Engineers of Distribution

WWW.EMCU.IT

Up to 6 independent PWM generators SILICA

Let's call them **SMED**'s = **S**tate **Machines Event Driven**

Software Configurable peripherals

Easy coupling for different topologies optimization (e.g. half-bridge)

- Output status defined by:
 - 3 programmable event inputs on Edge or level (selectable)
 - Another SMED output
- 16bits counter
- Clock frequency up to 96MHz

SMED – how it works

100W for LED Street or Interior Lighting life.auamented

SILICA | The Engineers of Distribution

150W HID lamp control

STEVAL-ILH007V1

Performances

- INPUT = 185~265Vac
- OUTPUT = 150W
- PFC + full bridge stages
 - STLUX385A controlling both stages

Comparison between electronic and magnetic ballast (230 Vac, 50 Hz – 150 W HPS Lamp)

	STEVAL-ILH007V1	Previous ST Solution (Mixed Analog-Digital)	Magnetic Ballast
Pout (W)	144.5 W	144.5 W	144.5 W
Pin (W)	156 W	160 W	167.1 W
Efficiency	92.5 %	90.3 %	86.5 %
Power factor	0.996	0.996	0.965
Current THD	7.5%	6.3%	21.3%

STLUX385A: In the domain of digital SI power conversion

Based on the platform extension

- STLUX Lower number of PWM for lighting
- STNRG addressing power applications
- **STWBC** wireless battery chargers

1kW interleaved charger

Wireless battery charger

AC/DC conversion

Power Factor Control

L6564H key feature

PFC companion Mosfet <150W

- 350W reference design (EVL4984-350W)
 - Efficiency > 94% on 85VAC 264VAC input range
 - THD<10% at full load on 85VAC 264VAC input range

- Design your PFC stage on st.com
 - www.st.com/edesignsuite

SiC diodes in PFC (...but not only)

The kit for industrial SMPS

green and good

Application RtM: we help you

SILICA | The Engineers of Distribution

L6566B / L6566BH

The quasi-resonant concept with a plus from ST

SuperMESH 5 (K5 – series)

The FIRST & BEST reference in the Power MOSFET market above 800V

	Just a Sn		
BV _{DSS} [V]	R _{DS} [Ω]	Qg [nC]	Sales Type
	4.5	3	STx2N80K5
800	0.95	13	STx8N80K5
	0.375	30	STx15N80K5
850	0.275	35	STW23N85K5
900	0.299	43	STx21N90K5
	1.250	13	STx6N95K5
950	0.8	20	STx10N95K5

1050V, 1200V & 1500V arrive in Q1 and Q2 2014

Best Silicon performance on the Market!

Most safe & flexible HV Packages on the Market !

...the Market !

Key Features

- 800V-1500V lowest R_{DS(on)} x area
- Lowest FOM (R_{DS(on)}*Q_q)
- Designed for highest efficiency
- High Voltage package TO-3PF

HF (Fluorescent) ballasts, wide input range

HID ballasts, High Powers, Outdoor

LED drivers, Outdoor, Street Lighting

Solar converters

Boost for Solar Converter

SMPS Welding

Lighting

- 3-phase input and 3-phase auxiliary PSU
- LCD TV, quasi resonant flyback converter

Industrial Drives & Factory Automation

SuperMESH 5 test benchmark

Quasi resonant Flyback converter

Main Deserved

Max Value T=25°C

	Maniff alameters					Out the
		STP21N90K5	STP20N95K5	STW25N95K3	Comp I	
echnology Family		ST SuperMESH 5	ST SuperMESH 5	ST SuperMESH3	Comp best device	
BVDSS		900	950	950	900	v
RDS(ON)	V _{DS} = 10V,	299	330	360	340	mΩ
ld		18.5	17.5	22	15	Α
Q 9	Vdd=450/760/760/400/V	43	40	105	94	nC
Ciss	VDS=100V	1645	1500	3680	2400	pF
Coss	VDS=100V	112	80	246	120	pF
Crss	VDS=100V	2	5	2	2	pF
Co(tr)	VDS = 0 to 720/760/500/ V	133	170	198	280	pF
Co(er)	VDS = 0 to 720/760/500/ V	16	65	278	71	pF
Rg		4	3.5	3	1.3	Ω

SuperMESH 5 STW6N95K5 shows better efficiency and thermal profile vs

Competition S-J same class RDS(on) & ST planar MOSFET same RDS(on)

→ due to better Eoff and the impact of lower parasitic capacitances

High efficiency green SMPS

Primary side: MDMeshII Low Qg series SILICA

RDSon alone means nothing!

SILICA | The Engineers of Distribution

5/ **Primary side: MDMeshll Low Qg series** life.augmented

Eng. Samples/

Packages

Max R_{DS} Max I_D Qg

BV_{DSS}[V]

P/N

									Data sheet						(*2) \/alue	for Power	FI AT n	ackana						
400	0.80	6	5	STD4N40M2	ED TV driving		DDAK		Dec 13	01'1	4				(2) value	IOI I OWEII	ПЕЛТР	ackage						
	0.53	9	10	STD11N50M2	5			0-								Eng.								
500	0.38	10	14	STD12N50M2	BVacrIVI	Max R _{DS}	wa x lo	inC	Sales Type	Mai	n applicati	ion	Pa	ckaqes		Samples	Prod	uction/						
	0.28	12	18	STD16N50M2		[Ω]	[A]	1								Data	Data	sheet						
	1.4	3.7	4.5	STx5N60M2												sheet								
	1.200	4.5	5	STx6N60M2	E /	0.280/ 0.308(**)	13	21	STx18/ <u>19</u> N60M2	SMD9 Ad	2 II-Inverter	Мох	TO-220/FP	/TO-247/D	02PAK/		Now /					Eng.	Productio	
	0.950/	5	6	STx7N60M2	5	0.100/				SN	BV[V]	R _{De}	Max I _D	Qg	Sales Tyr	pe Ma	ain apı	olication		P	ackages	Samples/	n/	
	0.780/	5.5	8	ST-ONROM2	ş	0.210(**)	18	29	STx24N60M2	Se dri	D221 1	[Ω]	[A]	Incl								Data sheet	Data	
	0.860(**)	5.5	0	31,31400112	,					SN						SMP		driver	IDA		/ D2PAK/TO-220	110-		
600	0.600/ 0.66(**)	8	10	STx10N60M2	\$	0.150	24	39	STx28N60M2	Se dri		1.3	3.5	5.5	STx6N65M	12		Max						Eng.
					ç					SN		1	4.5	6.5	STx7N65M	12 BV _D	ss[V]	R _{DS}	Max I _D	Qg InCl	Sales Type	Main application	Packages	Samples
	0.450/ 0.498(**)	10	14	STx12N60M2	600	0.125/ 0.135(**)	26	45	STx33N60M2	Se		11	TRD	6.5	STI 8N65M	12		[Ω]	101	[]				sheet
	0.380/				ę					SN				0.0				0.475	TBD	16	STL13N65M2	SMPS, LED driver, Adapters	PowerFLAT 5x6 HV	Q1'14
	0.420(**)	11	16	STx13N60M2	c I	0.088	34	75	STx40N60M2	Se		0.900	5	8	S1X9N65M	12		0.360	12	19	STx16N65M2	SMPS, LED driver, Adapters	IPAK/ DPAK/ TO-2200/FF	Q1'14
	0.320/	12	10	STy16N60M2	5					So		1	TBD	8	STL9N65M STL10N65M	12 V12		0.395	TBD	19	STL16N65M2	SMPS, LED driver, Adapters	PowerFLAT 5x6 HV	Q1'14
	0.355(**)	12	10	012101400002		0.070	40	95	STW48N60M2	SN Se		0.820	6	85	STD9HN65	M2		0.330	14	22	STx18N65M2	SMPS, LED driver, Adapters	12PAK / TO-220/TO-220FF	Q1'14
						0.055	50	110	STW56N60M2	SN	650	0.020		0.0				0.365	TBD	22	STL18N65M2	SMPS, LED driver,	PowerFLAT 5x6 HV	Q1'14
						0.000	50	110	311000002	Se		0.900	IBD	8.5	STL10HN65	M2		0.230	16	35	STx24N65M2	SMPS, LED driver,	12PAK/TO-220FP/TO-220	Q1'14
						0.040	68	130	STW70N60M2	SN Se		0.680	7	11	STx11N65M	VI2 65	50	0.255	TBD	35	STL24N65M2	SMPS, LED driver,	PowerFLAT 8x8 HV	Q1'14
															STL11N65M	V12		0.180	22	40	STx28N65M2	Adapters, Micro Inverter SMPS, LED driver,	12PAK/TO-220FP/TO-220	Q1'14
												0.750	IBD	11	STL12N65M	W2		0.140	24	50	STx33N65M2	Adapters SMPS, LED driver,	12PAK / TO-220FP /TO-220	01'14
												0.500	9	14	STx12N65M	//2		0.155	TRD	50	STI 33N65M2	Adapters SMPS, LED driver,	DowerFL &T 8v8 HV	01'14
												0.550	TBD	14	STL12HN65	iM2		0.099	30	72	STW40N65M2	Adapters, Micro inverter Servers, SMPS, Solar	TO-247/12PAK/TO-220/TO-22	0FP 01'14
												0.430	10	16	STy13N65M	//2		0.062	48	110	STW56N65M2	Servers, SMPS, Solar	TO-247, TO247-4	Q1'14
												0.400	10	10	01/10/1000	112		0.046	65	135	STW70N65M2	Servers, SMPS, Solar	TO-247	Q1'14
																		1.25	N/A	TBD	STU7N70M2	Battery charger	IPAK/ Short IPAK	Q1'14
																	0.0	1.35	N/A	TBD	STL7N70M2 STL8N70M2	Battery charger	PowerFLAT 5x5 PowerFLAT 5x6 HV	Q1'14
																	00	0.850	N/A	TBD	STU11N70M2	Battery charger	IPAK / Short IPAK	Q1'14
																		0.950	N/A	TBD	STL11N70M2 STL12N70M2	Battery charger	PowerFLAT 5x5	Q1'14

more than 150 P/Ns to fit specific ctm targets

Productio

sheet

Q2'14

Low voltage F7 Mosfet

DeepGATE (F7 – series) A revolutionary Newcomer touching the edge of his class

- Lowest conduction losses
- Small form factor of final system
- No EMI issues
- Robust design for Industrial &
 Automotive environment

Low voltage F7 Mosfet

		R _{DS} [mΩ] max			Pac	kage					
Part number	BV [V]			Qg [nC] 10V	PAK -220	20FP ^AK × 6	Samples Prel. DS	Prod. DS			
		SMD	TH		ΞÊ	10-10 10-10					
STripFET VII DeepGATE (100V "F7" series)											
STx310N10F7		2.3	2.7	180			٧	V			
STx240N10F7		3	3.2	176			Q1 '14	Q1 '14			
STx150N10F7		3.9	4.2	117			٧	Q1 '14			
STL110N10F7	100	6		72			٧	٧			
STx110N10F7		6.7	7	72			٧	٧			
STL100N10F7	7.3			61			٧	٧			
STx100N10F7		8	8	UI			٧	V			

Part number	R _{DS} [mΩ] BV max Qg [nC]		Packa	ge ⊣	Samples	Prod.		
Turchumber	[V]	SMD	тн	10V	H ² PAH TO-22 TO-220 DPAK	5×6 5×6D 3.3×3	Prel. DS	DS
ST	ripF	et v	ll De	epGATE	E (100V "	F7" sei	ries)	
STL90N10F7		9.5	20			٧	٧	
STx80N10F7		9.5	10	55			٧	٧
STL60N10F7		16.5					٧	٧
STx45N10F7		16	16	25			٧	٧
STL8N10F7		20					٧	Q1 '14
STL40N10F7		24		10			٧	٧
STx30N10F7	100	24	24	15			٧	۷
STL30N10F7	-	35					٧	٧
STx25N10F7		35	35	14			٧	٧
STL7N10F7		35					٧	
STL20DN10F7		80					٧	01 '14
STL4N10F7		80		8			٧	QI 11
STL3N10F7		80					۷	
Part number	BV [V]	R _{DS} [mΩ] max		Qg [nC] 10V	Package	Samples Prel. DS	s Pro DS	d. S
		SMD	TH		T C C C			
STri	ipFE	t VI	Dee	epGATE	E (120V '	'F7" se	ries)	
STx200N12F7		3.8	4.1	130				
STL100N12F7		7.5		C.F.		Q1 '14	Q3 '	14
STxxN12F7	12F7 120 8.2 8.5		8.5	כס				
STLyN12F7		11.5		AF		03/44	0.1	14
STxyN12F7		12.1	12.5	45		QZ 14	Ų3	14

HV Converters VIPer Plus & Altair

SILICA | The Engineers of Distribution

...towards zero standby

APPLICATION: AC-DC SMPS up to 30W

- Advanced controller with embedded 800V / 900V Power MOSFET
- Complete set of protections
- No load consumption <30mW

Automotive

VIPerPLUS and Altair families

SILICA | The Engineers of Distribution

(*) in MP by eof 2013 62

FROM FEATURES TO BENEFIT									
800V / 900V avalanche rugged MOSFET	 Market benchmark Application cost reduction & superior reliability 								
Optimized internal MOSFET	 Cost-effective replacement of capacitive power supplies (refrigerators, home automation) 								
Op-Amp embedded for feedback loop (VIPer*6 only)	 Versatile & cheap solution for both isolated / not isolated topologies 								
Primary side regulation (Altair only)	 High voltage/current precision in isolated solutions without need of optocoupler 								
Multiple switching frequencies	Flexible solution to optimize EMI filtering								

HV Converters portfolio

Altair family: primary side regulation

Standard solution

- dedicated CV-CC controller and optocoupler
- Sense resistor and relevant dissipation

ALTAIR solution

Cost effective solution

Altair04-900 Target Applications

- Energy metering SMPS
- Power supply for 3-phase input industrial system

Main Features

- <u>900V</u>, avalanche rugged power section
- QR current-mode PWM controller in BCD6 technology
- Constant voltage and constant current output regulation (CV/CC) with no optocoupler
- High performance for stand-by & efficiency
- Integrated protections: 2nd OCP, open loop protection (brownout) OLP, high OCP
- Automatic auto restart after fault

MAIN PARAMETERS	Power MOSFET (SuperMESH)	CONTROLLER (BCD6S)			
Break down voltage [V]	900				
R _{DSon} [Ohm]	16				
V _{DD} [V]		11.5 ÷ 23			
F _{OSC} [KHz]		Up to 166 kHz			
Restart time during burst mode		500us			
$R_{THJ-A} [^{\circ} C/W]^{(1)}$	50				
P _{OUT} [W] @ 85-265V _{AC}	5				

Pin description

- SOURCE: Power section Source
- Vcc: Controller supply voltage / ICHARGE output current
- GND: Controller ground
- IREF: Current loop reference
- ZCD/FB: Zero Current Detection, CV regulation, FF compensation
- COMP: Compensation network
- DRAIN: Power section Drain

Dimmable single channel LED driver with integrated boost controller

LED CURRENT CONTROL

 Boost controller with high-side current sensing circuitry

with 4% precision over temperature

► FLEXIBILITY

- Support boost, SEPIC and floating buck-boost
- Independent inputs for analog and PWM dimming
- Programmable current sensing reference
 - down to 30mV to reduce dissipation
 - up to 300mV for higher accuracy

ROBUSTNESS

- Overcurrent, overvoltage & thermal shutdown
- Reliable short circuit protection thanks to high side sensing

Thanks

We manage the Power

