

WAN Technologies and Connectivity Solutions

Connectivity at different levels 2

Wireless Sensor Node Block Diagram

3

Modular WSN solution

Communication Technologies - Overview

Challenges of LoWPAN 5

Impact Analysis	Addressing	Routing	Security	Network management
Low power (1-2 years lifetime on batteries)	Storage limitations, low overhead	Periodic sleep aware routing, low overhead	Simplicity (CPU usage), low overhead	Periodic sleep aware management, low overhead
Low cost (<\$10/unit)	Stateless address generation	Small or no routing tables	Ease of Use, simple bootstrapping	Space constraints
Low bandwidth (<300kbps)	Compressed addresses	Low routing overhead	Low packet overhead	Low network overhead
High density (<2-4? units/sq ft)	Large address space – IPv6	Scalable and routable to *a node*	Robust	Easy to use and scalable
IP network interaction	Address routable from IP world	Seamless IP routing	Work end to end from IP network	Compatible with SNMP, etc

Bluetooth Networking Bridging sensors to the Cloud

Mesh Network makes easy to implement the Internet of Things

Powered by A MOTOROLA SDK public release: e/o Q1'16

BlueNRG-MESH - Bluetooth Networking Rapid development kit - OpenSoftwareX

BlueNRG-MESH

OpenSoftwareX

BlueNRG-MESH SDK available as an open.RF package STM32 + BTLE bundle package

Triple phase deployment:

- 1. ST internal SDK availability: now
- 2. Alpha customers: now
- 3. Open market release: e/o Q1'16

MM Release e/o **Q1'16**

Announced @ CES'16

BlueNRG-MESH

STMicroelectronics and Motorola Solutions

BlueNRG-MS low-power BLE connectivity with MoBLE Mesh network capability

life.augmented

BlueNRG-MESH Scenario

10

LPWA: Low Power Wide Area

Wide area network for M2M & IoT

Low power & Long range

- Ultra low power tailored for battery powered devices
- Optimized for long range RF propagation

Private Network

LoRa Alliance

Multiple private networks

(Veolia, Areva, La Poste, ...)

(Orange, Bouygues, Senet (US),

The Lace cpy (Ru))

4 pilots with Telcos

Cheaper subscription cost than Cellular network

Wide Area Networks for IoT

Public Network

10 countries already deployed

(France, UK, Spain, Italy, ...)

20 countries in progress

50 Countries within 5 years

Sigfox and LoRa® - Overview 13

A different approach: Ultra Narrow Band (UNB) → MCSIGFOX Spread Spectrum (SS) → Core

	Sigfox	LoRa®
Modulation	UNB	DSS-like
Throughput	100bps	300bps to 50Kbps
Payload	12bytes	64bytes
Link Adaptation	No (BPSK)	VSF (SF7-Sf12)
BW	100Hz	125KHz
DutyCycle Limited	Yes	Yes
Channel Hopping	Yes	Yes
Best Sensitivity (dBm)	-142	-142
Bi-Directional	No (1)	Yes
Battery Life	10years	10Years
Localization	No	Yes (30m)
Encryption	AES-128	AES-128
SDR	Yes	N/A
Benefits	Robustness to RF coexistence Multi Radio vendor	2 to 3x longer Range Less sensitive to noise and environment Birectional
Drawbacks	Limited baud rate (->limited application) Limitation in the USA Not Bidirecrectional	Single radio provider High module cost \$3+ Network needs to be deployed

ST and Semtech LoRa® agreement 14

- Semtech Corporation and STMicroelectronics announce agreement on Semtech's Lora® long-range wireless RF technology
- Intends to boost STM32 MCUs with LoRa® technology to target internet of things deployments by mobile network operators and large-scale private networks

http://www.st.com/web/en/press/c2790

What is LoRa[™]?

Let's get started!

• HW Tools are already available

STM32 Nucleo

Semtech LoRa Shield

• Enjoy a quick plug'n play example (point-to-point demo) on ARM mbed

SX1276MB1xAS

The SX1276MB1MAS and SX1276LB1LAS are both fitted with the SX1276 transceiver which, added to a high-performance FSK / OOK RF transceiver modem, features the LoRa™ long range modem.

Hello World

SIGFOX basic concept

- SIGFOX long-range low-throughput wireless network solution is based on ultra-narrow band (UNB) radio technology. The use of UNB is key to providing a scalable, high-capacity network, with very low energy consumption, while maintaining a simple and easy to rollout star-based cell infrastructure.
- The network operates in the globally available ISM bands (license-free frequency bands). SIGFOX currently uses the most popular European ISM band on 868MHz (as defined by ETSI and CEPT) as well as the 902MHz in the USA (as defined by the FCC).

SPIRIT2 for SigFox 18

Sensor in transmit mode

SigFox: Key parameters

- 140 messages transmitted every day (1 message • every ~ 10.3 min)
- Frame length from 2 up to 26 bytes @ 100 bps
- External MCU needed to wake-up radio after • shutdown periods
 - When no TX: RF chipset in shutdown mode & MCU in RTC mode
 - When TX : MCU & RF ON, (SPI @ 8MHz)

System average current in µA (Spirit2 vs. competition)

TX bytes	Spirit 2	At	Т	Ax
2	7,82	9,82	12,83	14,35
6	21,46	27,45	36,76	40,95
10	35,10	45,08	60,68	67,55
14	48,73	62,71	84,61	94,15
18	62,37	80,34	108,54	120,75
22	76,01	97,97	132,47	147,35
26	89,64	115,60	156,40	173,95

SPIRIT2 for SigFox 19

Wireless links

20

6LoWPAN Features

- Support for e.g. 64-bit and 16-bit 802.15.4 addressing
- Useful with low-power link layers such as IEEE 802.15.4, narrowband ISM and power-line communications
- Efficient header compression
- Network auto-configuration using neighbour discovery
- Unicast, multicast and broadcast support
- Fragmentation
- Support for IP routing (using the IETF RPL standards)

6LowPAN – Enabling End-to-end Connectivity²²

User application IPv6 based

Application CoAP

IPv6 RPL

6loWPAN

802.15.4 PHY layer

ST 6LoWPAN Package

- ST offering based on Contiki 3.0 OS
- ST package available with 2 configurations:
 - Sensor nodes
 - Border router
- Up to 20 supported nodes (RAM limitation on border router)
- X-NUCLEO-IKS01A1 used for sensor nodes

6LoWPAN Contiki on STM32 Nucleo

Sensors Resource Access using CoAP Example of temperature sensor reading

17

RF Multi-Sensor node STEVAL Demo board

27

Wireless Bridge 28

NFC reader IC: CR95HF

- 13.56-MHz multi-protocol contactless transceiver IC
- Reader/writer
- SPI and UART serial access
- Optimized power management

- BT Classic module: SPBT2632
- NFC reader IC: CR95HF
- Wi-Fi module: SPWF01SA.11
- Sub-GHz RF module: SP1ML-868

868 MHz ETSI-certified module Based on sub-GHz SPIRIT1 transceiver. STM32L1 ULP MCU and balun (BALF-SPI-01D3)

Wi-Fi module: SPWF01SA.11

Pre-certified RF module (FCC, IC, CE)

2.4 GHz IEEE 802.11 b/g/n Wi-Fi

TLS/SSL for end-to-end security

Over-the-air firmware updates

Integrated TCP/IP

AT commands

.

- Chip antenna
- Simple AT command

Wi Ei

BT Classic module: SPBT2632

- Bluetooth® Classic 3.0 version •
- Embedded firmware, including Bluetooth stack and profile, SPP and iAP profiles
- AT commands ٠
- CE, FCC, IC, TELEC certified
- Low-power mode supported •

STEVAL-IDI005V1

- SP1ML 868 MHz wireless sensor board powered by a coin cell battery
- Key Features:
 - SP1ML-868, RF 868MHz certified module
 - HTS221: Humidity and Temp. Sensor
 - LIS2DH: MEMS Motion 3-axes Sensor
 - Serial wire debug interface (SWD)

- Application Target:
 - Heat Cost Allocator, Alarm, Beacon

(ST/consultant partnership)

Ì.

Mesh Routing Protocol 31

Distance Vector Protocol

- Routers using distance-vector protocol do not have knowledge of the entire path to a ٠ destination. Instead they use two methods:
- Direction in which router or exit interface a packet should be forwarded. ٠
- Distance from its destination ٠

Mesh Routing Solution Proposed

Central Host Network Based

32

- Differentiation and optimization of the routing for:

- node message vs host
- host message vs node

-Optimized for a network which nodes are sent frequently information to Central Host

Mesh Routing Solution Proposed 33

Central Host Network Based: Messages vs Central Host

- Each nodes saves only information regarding which router or exit interface a packet should be
- Nodes are able only to reach **Central Host**
- Light and Optimized version of a **Distance Vector Protocol**

Mesh Routing Solution Proposed 34

Central Host Network Based: Messages vs Nodes

 Central Host calculates best routing starting from partials path of the nodes -> OLSR (Optimized Link State Routing) mechanism is implemented

...don't forget the WIRES: ST Power Line Communication

PLM Products

Basic Features

- S-FSK Modulation
- Narrowband single channel
- Speed : up to 2,4 kbps baud rate
- Compliant with IEC 61334-5-1 and LINKY specifications (ERDF)
- FSK and n-PSK multiple modulations
- Narrowband dual channel
- Speed : up to 28.8kbps Baud Rate

- OFDM modulation
- Narrowband Multicarrier
- Speed : up to 130kbps Baud Rate
- Compiant with PRIME specifications (IBERDROLA)

STarGRID-based PLC application diagram 37

Most compact, lowest BOM PLC node on the market

Suggested ST PLM versus CENELEC PLC Frequency Bands & Use

ST7580 Evaluation Boards 39

• EVALKITST7580-1: PLC Evaluation Node with Power Supply Board and embedded STM32 MCU for application prototyping

• STEVAL-IHP007V1 Power line communication street lighting (ST7580)

