

Power 'n Motors

Critical aspects in power applications design, proper component selection & experimental results

9:00	Introduction		
9:15	 HV Motors (BLDC) & 3PHs Inverters Architectures & components New Intelligent Power Modules (IPM) from ST 1. Experimental results: Performance Benchmark 2. Guidelines to minimize EMI 		
11:00	Coffee break		
11:15	IPM simulation tool		
11:45	HV driving with isolationDriving an isolated 60kW HB driver: experimental results		
12:15	LV Motors (DC & BLDC) • Architectures & components		
12:30	Lunch		
13:30	 LV Motors (DC & BLDC) Choosing right MOSFET for LV Motor Control (1h) Relationship between MOSFET parameters & EMI behavior Experimental results: Performances of new F7 Technology 		
14:30	 ST solutions to drive three phases permanent magnet motors ST MCU Portfolio for Motor Control Software & Firmware Evalboard demonstration 		
16:00	Conclusions		

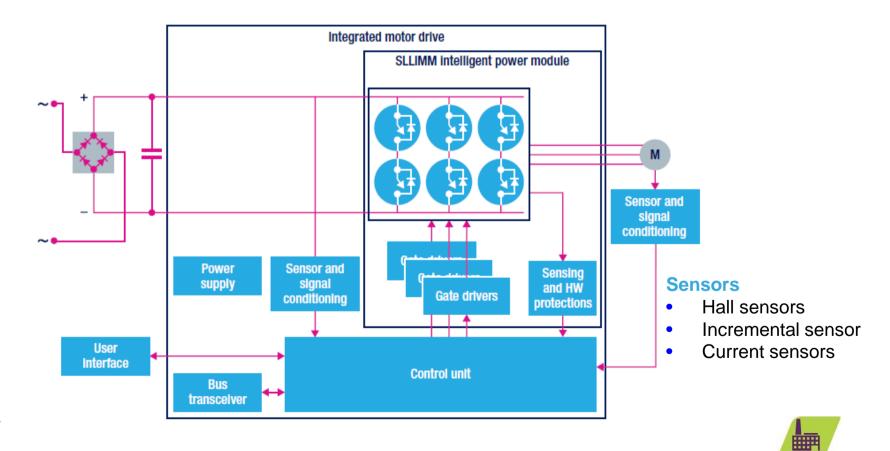
HV Motors (BLDC) and 3-phase Inverters

Architectures & Components

Introduction 4

- STMicroelectronics is a worldwide leading provider of innovative solutions for various motor control applications.
- Applying an advanced experience we offer a strong portfolio of electronic devices covering the ever growing demands of industries with ease.
- On ST website you find a dedicated section about our motor control products:

http://www.st.com/motorcontrol



3-phase brushless motors: Application topology 5

 Despite of their different structures, all of 3-phase AC induction motors (AC IM) and 3-phase permanent magnet motors (BLDC or PMSM or PMAC) are driven by a three-phase bridge (3 half bridges) PWM modulated so as to supply the motor with variable frequency and amplitude 3-phase voltages and currents.

3-phase brushless motors: Product map

 To give the greatest freedom, ST's product portfolio supports a discrete-based approach for applications with wide package choice for discrete MOSFETs or IGBTs.
 For highly-integrated configuration the SLLIMM product family offered.

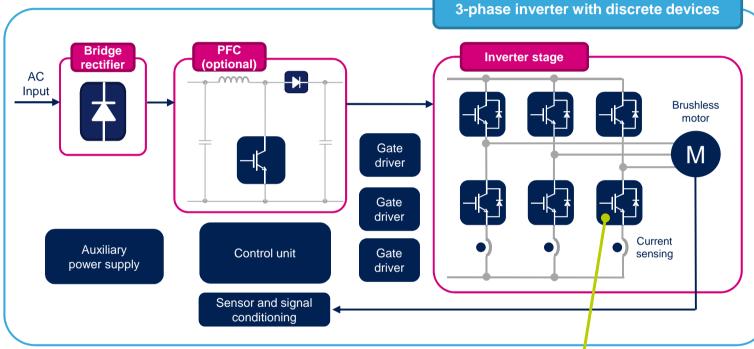
KEY BENEFITS

- High start-up torque
- Reliability, long lifetime
- Silent operation
- High efficiency

Motor type

Applications addressed

Suitable products


- 3-phase brushless motors
- Home appliances
- Industrial applications like pumps, fans, etc.
- IGBTs
- MOSFETs
- Gate drivers

3-phase Inverter for Brushless Motors

- Trench gate field stop
 - 600/1200V

600V-650V TFS IGBTs series

to serve the industrial market

600V 650V

H

2 - 30 kHz

Home Appliances

(fan, pump, washing, dryer) 3Φ & H-bridge inverters

STGxnn**H**60(**D**)F

5A, 7A, 10A, 15A, 20A DPAK, D2PAK, TO-220.

K, D2PAK, TO-220 TO-220FP V

50 - 100 kHz

Welding DC-DC

Full Bridge, Two switch forward

AC-DC PFC-CCM

STGxnnV60(D)F

20A, 30A, 40A, 60A, 80A

D2PAK, TO-220, TO-220FP, TO-247, TO-3P M

2 - 20 kHz

Solar Inverters

Asymmetrical, Full Bridge & Three level converter

Motor Control

3Φ and H-bridge inverter

UPS

Three level converters

Aircon

Compressor

STGxnnM65DF2

4A, 6A, 10A 15A, 20A, 30A, 50A, 75A, 100A, 120A

<u>DPAK, D2PAK, TO-220,</u> TO-220FP, TO-247, MAX247 HB

16 - 60 kHz

Solar, Welding DC-DC

Full Bridge, Two switch forward

Welding, Solar Boost, Aircon, Washing AC-DC PFC -CCM

Induction Heating, Microwave, Printer Half Bridge Current Resonant

STGxnnH65(D*)FB

20A, 30A, 40A, 60A, 80A

D2PAK, TO-220, TO-220FP, TO-247, TO-3P

Energy Saving

Extremely low switching-off combined with a low conduction losses.

Robustness and Reliability

The Increasing up to 175°C of the max Junction Temperature Tj(max), Ensures an higher lifetime

*) DL diode option for resonant converters

≥ 1200V TFS IGBTs series

to serve the industrial market

1200V

S

Up to 5 kHz

Motor Control 3Φ and full bridge inverters

Solar Inverter
Asymmetrical and full bridges,
three level converters

UPS

Three level converters

Aircon Compressors

STGxnn**S**120(**D**)F**3**

15A, 25A, 40A TO-247, TO-247LL M

2 – 20 kHz

Motor Control 3Φ and full bridge inverters

Solar Inverter

Asymmetrical and full bridges, three level converters

UPS

Three level converters

Aircon Compressors

STGxnn**M**120(**D**)F**3**

15A, 25A, 40A TO-247, TO-247LL H

15 - 100 kHz

Solar Inverter, Welding DC-DC

Full Bridge, Two switch forward

Welding, Solar Boost, Aircon, Washing AC-DC

PFC-CCM

UPS

Three level converters

Aircon Compressor

STGxnnH120(D)F2

15A, 25A, 40A TO-247, TO-247LL IH

1250V

8 – 60 kHz

Induction Heating, Microwave, Printer Half Bridge Voltage Resonant

STGxnn**IH**125(**D**)F

20A, 30A

TO-247, TO-3P

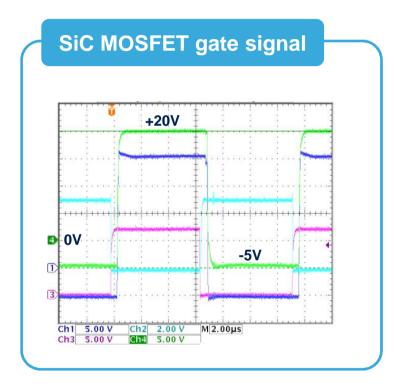
SCT30N120: SiC Power MOSFETfor motor control?

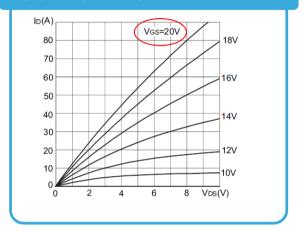
SCT30N120

- SCT30N120 SiC Power MOSFET, 45A, 1200V, 80mΩ
- Key parameters:
 - V_{BR} > 1200V
 - In = 45A
 - $R_{on(typ.)} < 80m\Omega$
 - $Q_{q(tvp.)} < 105nC$
 - Gate driving voltage = 20V
 - HiP247[™] package → Tjmax = 200°C

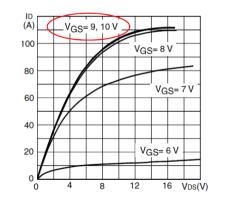
- Very tight variation of on-resistance vs. temperature
- · Slight variation of switching losses vs. temperature
- Very high operating temperature capability (200°C)
- Very fast and robust intrinsic body diode
- Low capacitance
- · Easy to drive
- Schedule:
 - Full mature

- 3-phase motor inverter
- 750V DC bus
- Load 35A RMS max
- 8 kHz switching freq.




A common mistake: 1-to-1 replacement

Driving a SiC MOSFET requires +20V on the gate pin


SiC MOSFET

SiC MOSFET - OUT characteristic

One-to-one replacement is not the right way to go!

AC_{MAINS} Vs. DC_{LINK} - Driver selection table 12

Mains AC/DC selection table				
Description	Nominal Voltage (V _{AC})	DC link Voltage (V _{DC})	What Driver ? (V _{RAIL})	
Japan single phase - neutral	100	140	600	
US single phase - neutral	115	160	600	
JAPAN phase-to-phase	200	280	600	
EU single phase - neutral	230	325	600	
EU phase-to-phase old system	380	535	1200	
EU phase-to-phase	400	565	1200	
UK phase-to-phase old system	415	585	1200	
EU phase-to-phase power systems	600	850	1200	
Phase-to-phase large power systems	690	970	1500/1700	
Phase-to-phase large power systems	750	1060	1500/1700	

STDRIVE_{smart} Family Overview 13

Gate Driver

L638X SERIES

600V HB drivers for IGBT/MOSFET

- L6384E
- L6385E
- L6386E
- L6387E
- L6388E
- A6387 (Automotive)

TD3XX SERIES

Low-Side Drivers

- TD350
- TD351
- TD352

Robustness

- Bootstrap diode integration
- UVLO on VCC & Vboot
- Smart shut down

System Integration

- Op Amp for current sensing
- Embedded comparator
- Logic interface & shut down

Sustainable Technology

- Bill of material reduction
- EMI improvement

L639X SERIES

600V HB driver for **IGBT/MOSFET** with integrated **OP-AMP and Smart Shutdown**

- L6390
- L6391
- L6392
- L6393
- L6395
- L6398

STDRIVE_{smart} L639x

- Family Positioning 14

L6390

+ Comparator & Op AMP

L6391

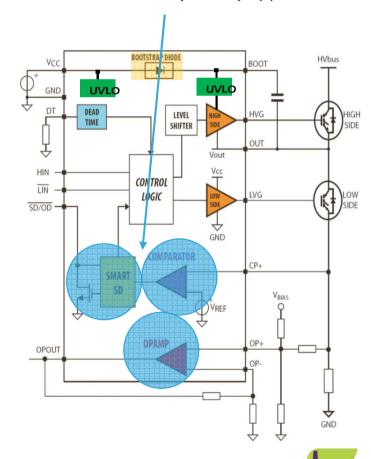
- + Smart SD integrated
- + Comparator

L6392

+ Op Amp integrated

L6393

- + Shutdown inputs
- + uncommitted comparator
- + interlocking & programmable DT

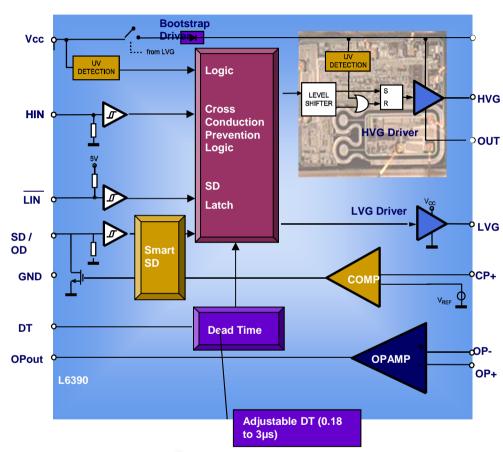

L6395

+ able to drive asymmetrical loads

L6398

High low side inputs, interlocking & DT protections, UVLO Vcc / Vboot

Embedded features optimized for Field Oriented Control (F.O.C.) applications

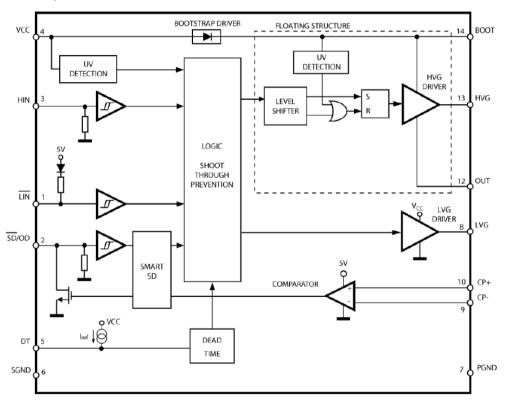

L6390 - Full Featured Half-Bridge Driver

Main features

- High voltage rail up to 600V
- Current capability: 290mA source, 430 mA sink
- Smart SD projection (200ns)
- Shut down dia mostic
- OP-Amp for current sense
- Adjustable Dead Time DT
- Comparator for fast fault protection
- Integrated boots trap diode
- SO16 / DIP16 Packages

life.augmented

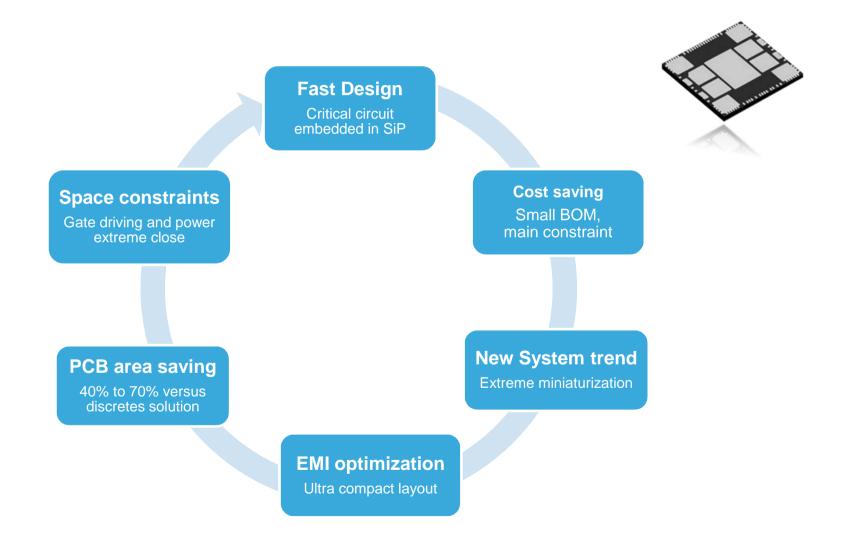
What if the current-capability is not enough?

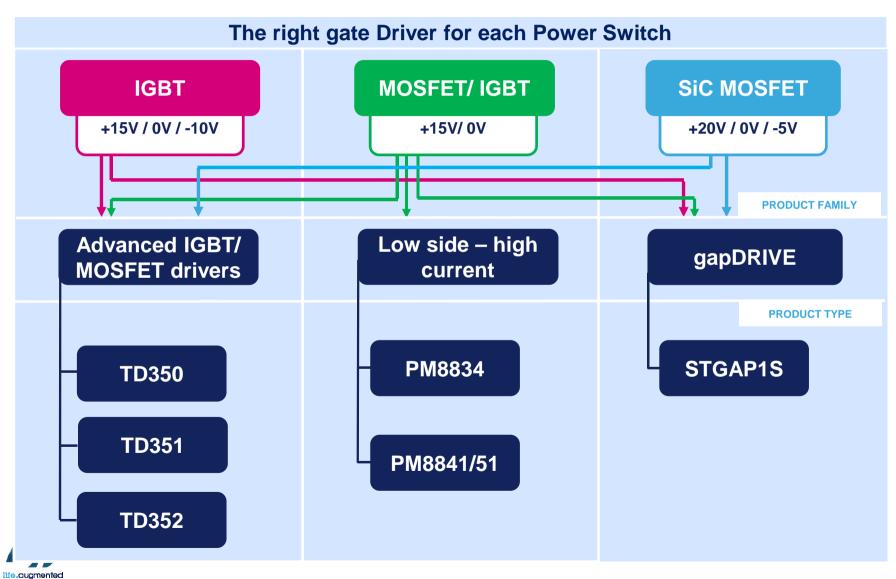


Half bridge gate driver L6491D

- state of the art 4A driving Power -

- High voltage rail up to 600V
- 4 A sink / source driver current capability
- Integrated bootstrap diode
- Embedded comparator for fault protection
- Smart shut-down function
- Adjustable dead-time
- Interlocking (to avoid cross-conduction)
- UVLO on both high-side and low-side sections
- ± 50 V / ns transient immunity


Leading performance of L639x family by adding 4A driving Power!


STDRIVE_{power} – Towards System-in-Package

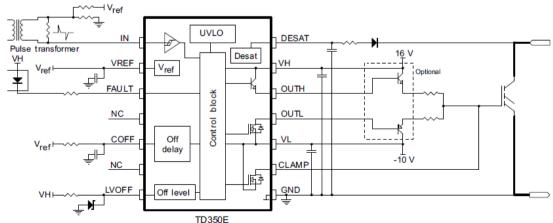
Why System-in-Packages?

MOSFET/IGBT drivers for 1200V applications – selection table

TD350E Advances IGBT and MOSFET Driver

Driver key features

- 2.3A/1.5A typical current capability
- Max VH = 28V Max VL=-12V
- Separate sink & source outputs for easy gate drive
- Active Miller Clamp
- Desaturation protection
- Optional 2-step turn-off sequence
- Fault status output
- UVLO protection
- SO14 package
- -40°C/125°C temperature range


Main target applications:

- 1200V 3-phase Inverter
- Industrial motor control

UVLO

UPS systems

Motor Control stages **Evaluation boards**

1000W

STEVAL-IHM025V1

- 1 x IGBT SHIMM™ **STGIPL14K60**
- 1 converter based on Viper16
- 1 x IGBT STGP10NC60KD

- 1 converter based on Viper16
- 1 x IGBT STGP10NC60KD

STEVAL-IHM028V1

- 1 x IGBT SLLIMM™ **STGIPS20K60**
- 1 x PWM SMPS VIPer26LD
- 1 x IGBT STGW35NB60SD

- 1 x IGBT SLLIMM™ **STGIPN3H60**
- 1 x PWM SMPS VIPer16L

SLLIMM™ (ST IPMs) based

STEVAL-IHM023V2

- •3 x PWM smart driver L6390
- •1 converter based on Viper16
- 7 x IGBT power switch **STGP10NC60KD**

STEVAL-IHM021V2

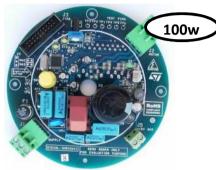
- •3 x PWM smart driver L6390
- •1 converter based on Viper12
- 6 x MOSFET power switch **STD5N52U**

STEVAL-IHM032V1

•3 x PWM smart driver:

2xL6392D and 1x L6391D

- •1 converter based on Viper12
- •6 x IGBT power switch: **STGD3HF60HD**


STEVAL-IHM031V1

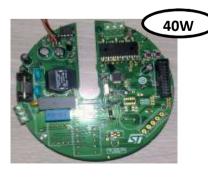
- 3 x dual PowerMOSFETs **STS8dnh3**l
- •2 x PWM smart driver **L6387E**
- 1x step down converter **L4976D**

Complete 3-phase Motor drive solutions

Evaluation boards

STEVAL-IHM036V1

PMSM FOC Motor Drive


- 1 x 32bit Micro **STM32F100C6**
- 1 x IGBT SLLIMM™ **STGIPN3H60**
- 1 converter based on Viper16

STEVAL-IHM034V1

Dual motor drive + digital PFC

- 1 x 32bit Micro **STM32F103C8T6**
- 1 x IGBT SLLIMM™ **STGIPS20K60**
- 1 converter based on Viper16L

STEVAL-IHM038V1

FAN Drive + PFC + IrDA

- 1 x 32bit Micro **STM32100**
- 1 x IGBT SLLIMM™ **STGIPN3H60**
- 1 PFC controller L6562A

www.st.com/motorcontrol