Power 'n Motors

Critical aspects in power applications design, proper component selection & experimental results

Agenda 2

9:00	Introduction
9:15	 HV Motors (BLDC) & 3PHs Inverters Architectures & components New Intelligent Power Modules (IPM) from ST Experimental results: Performance Benchmark Guidelines to minimize EMI
11:00	Coffee break
11:15	IPM simulation tool
11:45	HV driving with isolationDriving an isolated 60kW HB driver: experimental results
12:15	LV Motors (DC & BLDC)Architectures & components
12:30	Lunch
13:30	 LV Motors (DC & BLDC) Choosing right MOSFET for LV Motor Control (1h) Relationship between MOSFET parameters & EMI behavior Experimental results: Performances of new F7 Technology
14:30	 ST solutions to drive three phases permanent magnet motors ST MCU Portfolio for Motor Control Software & Firmware Evalboard demonstration
16:00	Conclusions

LV Motors (DC & BLDC)

Architectures & Components

Typical LV motor control applications

- Low voltage motor control applications range throughout various environments starting from industrial (assembly machines, stage lighting) over point of sale and office equipment applications (ticket machines, printers) to medical (diagnostic equipment, pumps).
- For lower power rated applications (up to ~100W) STMicroelectronics provides monolithic solutions integrating interface with microcontroller together with fully protected powerstage and diagnostics on the same chip.
- High power applications are covered by rich portfolio of Power MOSFETs, IGBT's and Gate Drivers.

ife.cucment

and wherever motors are used

STSPIN & STDRIVE

Brushed DC motor applications 7

• DC motors have been widely used in wide range of applications.

life.cucmented

• STMicroelectronics product portfolio covers various needs of DC motor applications with either monolithic drivers or discrete power MOSFETs.

Motor type	Applications addressed	Suitable products
Brushed DC	 Traditional cost-effective choice for low power motion control applications Bidirectional rotation required Small battery-powered appliances, toys, etc. 	 PowerSPIN (L62x5, L62x6(Q), L62x7(Q),) FlexSPIN (L6460) Discrete Power Transistors (H5, H6, F6, H7, F7 Trench MOSFETs)
17		

Brushed DC motors:

Application topology I.

- Single-switch topology allows control in a single direction of motion.
- Pulse Width Modulation (PWM) is used to vary the voltage applied to the motor and thus to control its speed.

8

Brushed DC motors:

Application topology II.

- Full-bridge converter is used when driving a DC motor in both directions of rotation allowing also braking and angular positioning of the rotor.
- Pulse Width Modulation (PWM) is used for control.

BLDC Typical driving circuits 10

3 phase bridge (inverter)

- Control methods
 - 6 step (simple)
 - Sinusoidal (scalar or vector control)
- Discrete or integrated solutions
- With or w/o position sensors
 - Hall-effect detectors
- Current sensing
 - Three shunt
 - Single shunt

Driving all motor types 12

STSPIN by Ratings Monolithic & System In Package

13

Brushed DC motors: Dual H-bridge driver topologies (1/3) ¹⁵

- Our dual H-bridge versatile products (L62xx) can drive:
- **1.** Either two DC motors in both directions of motion,

Brushed DC motors: Dual H-bridge driver topologies (2/3) ¹⁶

- Our dual H-bridge versatile products (L62xx) can drive :
- 1. Either two DC motors in both directions of motion,
- 2. a single DC motor with better performance in respect to optimization of power losses and dissipation,

Brushed DC motors: Dual H-bridge driver topologies (3/3)

- Our dual H-bridge versatile products (L62xx) can drive :
- 1. Either two DC motors in both directions of motion,
- 2. a single DC motor with better performance in respect to optimization of power losses and dissipation,
- 3. or a two-phase bipolar stepper motor!

Just using a single QFN device!

Dual H-bridge series: Family characteristics

Parameter	L620x family	L622x family	
Operating Supply Voltage	from 8 to 52V		
R _{ds(on)}	0.3 Ω	0.73 Ω	
Max load current	2.8 A _{rms} (5.6 A peak)	1.4 A _{rms} (2.8 A peak)	
Max frequency	100 kHz		
Protections	Non-dissipative overcurrent Thermal protection Under Voltage Lock Out		
Packages	PowerSO, SO, PDIP, QFN 7x7	PowerSO, SO, PDIP, QFN 5x5	

18

L62x6 Typical Applications 20

HB Outputs paralleling L62x5 and L62x6 21

- Halved equivalent $R_{DS(ON)}$: **0.15** Ω Typ. (0.3 Ω for L622x)
- Doubled max r.m.s. Current: 2.8 A (1.4 A for L622x)
- Doubled max peak Current: 5.6 A (2.8 A for L622x)
- Doubled Over Current Threshold: 11.2 A (5.6 A for L622x)

Supply voltage min-**Output current Part number** Description Package Note max [V] r.m.s. [A] PowerDIP24, PowerSPIN: DMOS driver for L6229 8-52 1.4 PowerSO36, SO24 three-phase brushless DC motor PowerSO36, Optimized for PowerSPIN : DMOS driver for L6230 8-52 1.4 VFQFPN32 5x5 three-phase brushless DC motor sensor-less FOC PowerDIP20, PowerSPIN : DMOS driver for Optimized for L6234 2.8 7-52 PowerSO20 three-phase brushless DC motor sensor-less FOC PowerDIP24, PowerSPIN : Three Phase L6235 13-38 2.5 PowerSO36, SO24 **Brushless DC Motor Driver**

3-phase bridge series: Family characteristics

Parameter	L6235	L6229 and L6230	
Operating Supply Voltage	from 8 to 52V		
R _{ds(on)}	0.3 Ω	0.73 Ω	
Max load current	2.8 Arms (5.6 A peak)	1.4 Arms (2.8 A peak)	
Max frequency	100 kHz		
Protections	Non-dissipative overcurrent Thermal protection Under Voltage Lock Out		
Packages	PowerSO, SO, PDIP, QFN 7x7	PowerSO, SO, PDIP, QFN 5x5	

PowerSPIN - BLDC Motor Drivers

Designed for stand-alone operation with 3x Hall-effect detectors

Optimized for Field Oriented (Vector) Control, 3 shunt or a single shunt

L6235 and L6229 25

Typical application 26

STDRIVE power – Towards System-in-Package

Why System-in-Packages?

27

STSPIN_{digital} – Family Overview

Best-in-class for Stepper Motors Control

STSPIN[™] digital – *KEY DIFFERENTIATORS*

- 1) Digital Motion Engine
- 2) Innovative Voltage Mode Control
- 3) Advanced Current Mode Control
- 4) Extreme Power integration

powerSTEP Highlights Compact, powerful, accurate

30

- System in package integrating 8 MOSFETs for stepper applications up to 85 V
- Dual H-Bridge with $R_{DS(ON)}$ 16 m Ω for 10 A_{rms}
- Smoothness and precision up to 1/128 micro-steps
- Easily programmable with SPI providing full control of speed profile and positioning
- Fully protected with UVLO, OVLO, over-current, thermal warning/SD

powerSTEP01 compact, powerful, accurate

31

life.augmented

PowerSTEP01 features overview (1/6) 32

PowerSTEP01 features overview (2/6) 33

PowerSTEP01 features overview (3/6) 34

PowerSTEP01 features overview (4/6) 35

PowerSTEP01 features overview (5/6) 36

PowerSTEP01 features overview (6/6) 37

From cSPIN demo board (8x MOSFET in DPAK) to powerSTEP eval

EVLPOWERSTEP01

Available now

powerSTEP[™] System Architecture Advantages

39

life.augmented

www.st.com/motorcontrol