

Critical aspects in power applications design, proper component selection & experimental results

Agenda 2

9:00	Introduction
9:15	 HV Motors (BLDC) & 3PHs Inverters Architectures & components New Intelligent Power Modules (IPM) from ST Experimental results: Performance Benchmark Guidelines to minimize EMI
11:00	Coffee break
11:15	IPM simulation tool
11:45	HV driving with isolationDriving an isolated 60kW HB driver: experimental results
12:15	LV Motors (DC & BLDC)Architectures & components
12:30	Lunch
13:30	 LV Motors (DC & BLDC) Choosing right MOSFET for LV Motor Control (1h) Relationship between MOSFET parameters & EMI behavior Experimental results: Performances of new F7 Technology
14:30	 ST solutions to drive three phases permanent magnet motors ST MCU Portfolio for Motor Control Software & Firmware Evalboard demonstration

Conclusions

16:00

ST solutions to drive three phases permanent magnet motors

Software & Firmware

Evaluation boards

G. Forte Systems Lab ST Confidential

What is FOC? 4

- FOC is the acronym of *Field Oriented Control.*
- The purpose of the FOC is to maximize the electro-magnetic torque provided by the motor keeping the two magnetic fields (rotor and stator) always at 90 electrical degrees.

Torque $\rm T_{\rm e}$ is maximized if the two field are kept at 90°

Benefits of FOC

- Best energy efficiency even during transient operation.
- Responsive speed control to load variations.
- Decoupled control of both electromagnetic torque and flux.
- Acoustical noise reduction due to sinusoidal waveforms.
- Active electrical brake and energy reversal.

PMSM FOC Basics

 Field Oriented Control: stator currents (Field) are controlled in amplitude and phase (Orientation) with respect to rotor flux

Current sensing is mandatory (3shunt/1shunt/ICS)

> speed / position sensing is mandatory (encoder/Hall/sensorless algorithm)

current controllers needed (PI/D,FF)

In the easy... high frequency sinusoidal references + stiff amplitude modulation... reference frame transformation (Clarke / Park) allows to simplify the problem:

PMSM FOC Basics:

reference frame transformations

• Clarke: transforms i_a, i_b, i_c (120°) to i_{α}, i_{β} (90°); (consider that ia+ib+ic=0);

• Park: currents i_{α} , i_{β} , transformed on a reference frame rotating with their frequency, become DC currents i_a , i_d (90°)

• PI regulators now work efficiently in a 'DC' domain; their DC outputs, voltage reference v_{α} , v_{d} are handled by the Reverse Park -> v_{α} , v_{β} AC domain

PMSM FOC – Block Diagram

STM32 PMSM FOC SDK v4.1

STSW-STM32100 - includes the PMSM FOC FW library and ST MC Workbench (GUI), allowing the user to evaluate ST products in applications driving single or dual Field Oriented Control of 3-phase Permanent Magnet motors (PMSM), featuring STM32F3xx, STM32F4xx, STM32F0xx, STM32F1xx, STM32F2xx

Strict ANSI C compliancy

communication through PC software ST Confidential

STM32 FOC SDK Key Features

MC FW LIB v4.1

Plug-in: Digital PFC

(1) High Frequency Injection

(2) Supported only for STM32F103, STM3F2, STM3F4

(3) Max FOC estimated in sensorless mode

ST PMSM FOC library

Features

Speed/position sensors supported:

- Quadrature Encoder
 - Expensive sensor, usually only in robotics applications
- Hall Sensors
 - Cheaper sensors, usually for application requiring full torque at zero speed
- Sensor-less
 - High frequency injection (ST patent pending):
 - for anisotropic motors (IPMSM, Ld<Lq)
 - allows precise rotor angle detection; it enables advantages of FOC in torque/speed/position control mode at very low and zero speed
 - STM32F3 and STM32F4 only
 - State observer + PLL
 - Use electrical quantities (mainly current feedback) to estimate rotor position
 - Used for many applications not requiring full torque at zero speed or very low speed operations (< 3-5% of nominal speed)

High Frequency Injection

Minimum points of the envelop of λ_{kq} show d/q axes -> angle detection !

ST PMSM FOC library

Features

ST Confidential

Current sensing topologies:

- 1 shunt resistor placed on the DC link
 - ST patented algorithm
 - Only one op-amp /shunt resistor is needed \rightarrow lowest cost
 - Current reading algorithm may result in not accurate torque regulation
- 3 shunt resistors placed in the three legs
 - Current reading accuracy: high
 - Best compromise cost / performances
- 2 Isolated Current Sensors (ICS)
 - Not dissipative current sensing topology → mandatory when current exceed some tens Ampere
 - Expensive
- Any possible configuration (2 motors x 3 current sensing x 3 speed sensors type) is supported by FW library

Motor control kits 14

Part Number	Description	ST Link onboard	Туре
STM32100B-MCKIT	Motor control starter kit for STM32F100 (128KB Flash) Value Line MCUs	Yes	Single drive
STM3210B-MCKIT	Motor control starter kit for STM32 (128KB flash) Performance and Access Line microcontrollers	No	Single drive

The motor control kit connections represented below can also be applied when combining STM32 control boards and evaluation power boards.

ST complete inverters 15

		2
		ľ

Part Number	Description	ST Link onboard	Туре
STEVAL-IHM034V2	Dual motor control and PFC demonstration board featuring the STM32F103 and STGIPS20C60	No	Single/Dual drive
STEVAL-IHM036V1	Low power motor control board featuring the SLLIMM™ STGIPN3H60 and MCU STM32F100C6T6B	No	Single drive
STEVAL-IHM038V1	BLDC ceiling fan controller based on STM32 and SLLIMM-nano	No	Single drive
STEVAL-IHM040V1	BLDC/PMSM driver demonstration board based on STM32 and the SLLIMM nano™	No	Single drive
STEVAL-IHM042V1	Compact, low-voltage dual motor control board based on the STM32F303 and L6230	Yes	Single/Dual drive
STEVAL-IHM043V1	6-Step BLDC sensorless driver board based on the STM32F051 and L6234	No	Single drive
STEVAL-IFN003V1	DC PMSM FOC motor drive	No	Single drive

STEVAL-IHM034V2

STEVAL-IHM036V1

STEVAL-IHM038V1

STEVAL-IHM040V1

STM32 evaluation boards with MC connector

Part Number	Description	ST Link onboard ⁽¹⁾	Туре
STM3210E-EVAL	Evaluation board for STM32 F1 series - with STM32F103 MCU	No	Single drive
STM3220G-EVAL	Evaluation board for STM32 F2 series - with STM32F207IG MCU	Yes	Single drive
STM32303C-EVAL	Evaluation board for STM32F303xx microcontrollers	Yes	Single/Dual drive
STM3240G-EVAL	Evaluation board for STM32F407 line - with STM32F407IG MCU	Yes	Single drive
STEVAL-IHM022V1	High density dual motor control demonstration board based on the STM32F103ZE microcontroller	No	Single/Dual drive
STEVAL-IHM039V1	Dual motor drive control stage based on the STM32F415ZG microcontroller	No	Single/Dual drive

STM3220G-EVAL

Control board

STEVAL-IHM022V1

STM32303C-EVAL

STEVAL-IHM039V1

(1) Only necessary for high-voltage applications or if not included with the evaluation board: In-circuit debugger/programmer.

- ST-LINK/V2
- ST-LINK/V2-ISOL (2500 VRMS high isolation voltage)

ST evaluation power boards with MC connector

Part Number	Description
STEVAL-IHM021V2	100 W, 3-phase inverter based on L6390 and UltraFASTmesh™ MOSFET for speed FOC of 3-phase PMSM motor drive
STEVAL-IHM023V3	1 kW 3-phase motor control evaluation board featuring L6390 drivers and new IGBT STGP10H60DF
STEVAL-IHM025V1	1 kW 3-phase motor control demonstration board featuring the IGBT SLLIMM™ STGIPL14K60
STEVAL-IHM028V2	2 kW 3-phase motor control demonstration board featuring the IGBT intelligent power module STGIPS20C60
STEVAL-IHM032V1	150 W inverter featuring the L639x and STGD3HF60HD for 1-shunt based sinusoidal vector control and trapezoidal scalar control
STEVAL-IHM035V2	3-phase high voltage inverter power board for FOC and scalar motor control based on the STGIPN3H60 (SLLIMM™- nano)
STEVAL-IHM045V1	3-phase high voltage inverter power board for FOC based on the STGIPN3H60A (SLLIMM™-nano)

Power board

life.gugmented

ST PMSM FOC library

Features

• Wide range of ST products supported (STM32, SLLIMM IPM, L639x, IGBT/Power Mosfet) using PC tool configurator: ST MC Workbench

New project creation (1/2) Starting from the Hardware

New project creation (2/2) Hardware for Motor Profiler

20

ST PMSM FOC library 21

Features

Real time tuning capabilities

"Motor Profiler" why?

Why motor electrical parameters are required by FOC?

- Electrical and mechanical parameters are required by the algorithms to define the model of the motor
- It is required to tune the current regulators
- It is required for Sensorless state observer algorithm
- It is required for additional features
- It is required to tune the speed regulators

"Motor Profiler" why?

Sometimes to start the evaluation of motor control solution can be hard

- To measure the motor parameters can requires specific skills and equipment
- Tuning of the regulators can be empirical
- Find the proper acceleration for the startup can't be easy
- Many trials and errors before to run the motor

What can't be measured 24

These parameters shall be insert by the user

- Motor poles pairs
- Maximum Application speed
 - Nominal speed of the motor will be computed • and used to validate the maximum application speed insert by the user
- Nominal current
- Motor anisotropy Lq/Ld ratio

Magnetic structure	Surface Mounted PMSM -
Electrical parameters	
Pole Pairs	2
Max. Application Speed	4000 👘 rpm
Nominal Current	2.10 A
Demagnetizing Current	2.1 A Auto

Measure electrical parameters

Electrical motor parameters measurement

- No additional HW and equipment required
- To perform the measurements is required to apply a voltage and measure the current
- Usual PWM generation is used to supply the voltage
- To compute the real voltage applied it is also measured the DC bus voltage
- Usual motor phase current sensing is used to measure the current

Current regulators tuning

Automatic tuning of current regulators

- Once the Rs and Ld are known, is possible to tune-up the closed loop current regulators
- Kp and Ki of Iq and Id current regulator, and related dividers, are computed according a single common parameter ω_{ce} (current regulation closed loop bandwidth)
- ω_{ce} defines the closed loop electrical constant time τ_{ce}

Measure electrical parameters

Startup and Ke measurement

- To measure the Ke (motor BEMF voltage constant) is necessary that the motor is running
- With tuned current controllers it is possible to apply an open loop acceleration (Startup)
- On the fly measurement of Ke is performed using the motor model

Mechanical motor parameters 30

Mechanical motor parameters measurement

 First order (inertial plus frictional) mechanical system model is used to perform the measurement

Mechanical motor parameters 31

Measurement of J (moment of inertia)

• The measurement of the moment of inertia is done through the measurement of the mechanical constant time τ_m

Speed regulators tuning

Automatic tuning of speed regulators

- Once the J and F are measured is possible to tune-up the closed loop speed regulators
- Kp and Ki of speed regulator, and related dividers, are computed according a single common parameter ω_{cm} (speed regulation closed loop bandwidth)
- ω_{cm} defines the closed loop mechanical constant time τ_{cm}

Motor Profiler + One Touch Tuning

Plug and Spin your Motor in less than 60 seconds

ST Confidential

33

For further info about STM32 PMSM FOC SDK, please visit:

http://www.st.com/stm32

Part number: STSW-STM32100

Downloads:

STM32 PMSM FOC SDK:

http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF257936

<u>UM1052</u>:

STM32F PMSM single/dual FOC SDK

<u>UM1053</u>:

Advanced developer guide for STM32F PMSM single/dual FOC library

<u>UM1080</u>:

Quick start guide for STM32F PMSM single/dual FOC SDK V4.0

Motor Control FORUM

Motor Control Solution Eval Boards

www.st.com

