
STM32F4 family – practical session 

Atollic TrueSTUDIO STM32 

+ STM32F4 discovery kit 

modified by www.emcu.it 

www.emcu.it 

http://www.emcu.it/


Before the training 

 Select/configure PC with MS Windows 2000/XP/Vista/7 in order to have 

administrative rights (required by ST-Link programmer/debugger) 

 

 Install the current version of Atollic TrueSTUDIO STM32  

 

 Prepare USB cable type A to mini-B 

 

 Prepare STM32F4_Discovery board. 

 

 Check whether there are no updates for ST-Link programmer/debugger 

available on www.st.com/stm32f4-discovery web page 

www.emcu.it 

http://www.st.com/stm32f4-discovery
http://www.st.com/stm32f4-discovery
http://www.st.com/stm32f4-discovery
http://www.emcu.it/


STM32F4_Discovery – in zoom 

 STM32F4-Discovery board has two parts: ST-Link 

programmer/debugger and evaluation board with 

STM32F4xx MCU (CortexM4 based STM32) 

 ST-Link can be used either as on board programmer 

(SEL jumpers must be ON) or as standalone 

programmer for external STM32 (SEL jumpers must 

be OFF). It is working only in SWD mode. 

 Evaluation part is equipped with STM32F407VGT6 

MCU (1MB Flash, 192kB RAM, 100pin package) 

with built in clocking system (main oscillator for HSE 

generator 8MHz).  

 it is possible to measure current consumption of 

the MCU using JP1 jumper.  

 On board there are: 

 MEMS accelerometer (LIS302DL) connected via SPI1 

 Simple user interface (button + 4 LEDs) 

 Audio codec with audio output  

 MEMS microphone (MP45DT02) 

 USB OTG connector with 2 signaling LEDs 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32 

INTRODUCTION 

 Run TrueSTUDIO STM32 PRO  

 

 Enter path for your new workspace 
or path for existing one. 

 

 It is better NOT TO mark “Use this 
as the default and do not ask 
again”. 

 

 If it is a new project generation, 
welcome window will appear -> 
select Start using TrueSTUDIO 

 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32  

Import existing project (.ZIP) to workspace 

As a result all imported project will 

be copied to workspace folder and 

would be build automatically 

 Select File->Import 

 In Import window select General tab 
and then Existing Projects into 
Workspace 

 Click Next 

In Import project window: 

 Select archive file  

 Select  projects from the file 

 Click Finish 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32 

Export existing project to archive (.ZIP) 

 

In Archive file window: 

 Select requested projects from 
current workspace 

 Select settings for the project 
(.cproject, .project and linker file 
*.ld) 

 Select target file and its path 

 Select output format (.zip, .tar) 

 If necessary select compress of the 
content 

 Select Create directory structure for 
files 

 Click 

 Select File->Export 

 In Export window select General tab 
and then Archive file 

 Click Next 

Finish 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32  

Project – file structure 

 After create new project dedicated to one of the boards following file structure will be 

visible in project explorer: 
 Binaries 

 Includes 

 Utilities -> procedures to handle GUI on eval board  

 src -> main source directory (main.c – main.h – etc) 

 Libraries -> ST and CMSIS libraries 

 CMSIS 

 STM32F4xx_StdPeriph_Driver 

 Debug 

 Physically on HDD project folder, there will be following subdirectories: 
 .metadata – main configuration of the workspace.  

 <Prj_name> -> main prj dir including sources, linker file (*.ld), object files and executables 

 .coverage -> used for code coverage analysis (not available in Lite version) 

 .settings -> used for hardware details concerning used MCU, eval board and programmer/debugger 

 Debug -> object files, executables of the project 

 Libraries  

 Utilities 

 src  

 When using remote sources (link to external sources) only .settings and Debug 

folders are present. 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32   

Project – file structure operations 

 Easiest way to add new .c file to the project is just copy it to one of source directories. 

Files will be detected automatically by the toolchain and will be included to compiler 

and linker files. Other methods are source files import or create remote link. 

 

 Project Explorer important options are valid for files and directories (mouse right 

button): 

 Exclude from build can be used to not to build part of the code 

 Delete physically removes all selected sources and its headers from project 

directory on HDD 

 Import physically copies selected files to project directory 

 

 Open/create new project in the same workspace using code generator will create the 

same folder structure including another copy of libraries. To avoid this we can use link 

to remote sources option. 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32  

Tasks editor features 

Come back later…. tasks 

When there is a need to come back  

to some part of the code later on, it  

is useful to use Tasks. 

To do so: 

 Right click on line number where  

there is something to do later on. 

 Insert C style comment (/* */) with  

the first word equal to one of the  

defined keywords (called task  

tags) 

 Available Task Tags are visible  

under  

Window->Preferences->C/C++ section->Task Tags 

 It will be visible in Tasks list (bottom part of the screen) – double click on the task will open proper file at 

the line where the task was set 

 To remove the task it is enough to right click on this  

name in Tasks list and select Delete or just delete  

the key word (task tag) 

 

 

 

 

WARNING – user defined task tags are not exported 

with the projects so they will be not visible after import 

the project to new workspace. They should be added 

in Task Tags menu in new workspace.  

After this operation all tasks will be visible. 
www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32  

Build the project and configure debug session 

 Select project by click its name in project explorer 

 

 Select proper configuration (debug or release) 

 Project -> Build Configuration -> Set Active or 

 

 Build the project 

 Project->Build All or Ctrl+B or 

 

 Configure debug session (run GDB server) 

 Run -> Debug Configurations, Debugger tab 

 Select “Autostart local GDB server” 

 Select SWD 

 

 Run Debug session 

 Run -> Debug or F11 or 

  

 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32  

Run debug session 

 Select GDB Hardware Debugger 

 

 

 

 Start the program 

 Run -> Resume or F8 or  

 Exit to debug 

 Run -> Terminate or Ctrl+F2 or 

 

 Add/remove breakpoint 

 Double click on the line number 

 Remove all breakpoints 

 Run -> Remove All Breakpoints or  

 www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32  

Debug session 

 To add variables to be watched 

-> drag&drop its name to 

Expressions tab or right click 

mouse and select “Add watch 

expression” 

 

 To set breakpoint double click 

on the line. Breakpoints can be 

followed on/off in Breakpoints 

tab 

 

 All necessary information 

concerning the registers of the 

peripherals is available (reset 

state, address, current value, 

bits value and the description). 

 

www.emcu.it 

http://www.emcu.it/


Atollic TrueSTUDIO/STM32   

Debug session - operations 

 It is possible to track changes in core 

registers -> Registers tab (any change 

is reported by yellow highlight) 

 

 Debug bar 

Restart program 

Run/resume program 

Suspend program 

Terminate program 

Step into (F5) 

  Step over (F6) 

    Using step filters 

Assembler instruction stepping mode 

www.emcu.it 

http://www.emcu.it/


STM32 – startup procedure 

 Minimum requirement for STM32 to start is to fill two first words in its 

vector table: 

 First word is always initial Main Stack Pointer value  

 Second word is always address of reset procedure 

 It is recommended to implement as well main fault vectors (HardFault 

at least) 

 In STM32 std library implementation with CMSIS standard, vector 

table is defined in startup file, which is prepared for each family 

member and each toolchain. 

 In case of STM32F407VGT6 and Atollic it is startup_stm32f4xx.s file 

located in the folder /src inside the project 

 In ST library there are some additional operations put before main() 

function will be executed. The most important is SystemInit() function 

coming from system_stm32f4xx.c file. This function is doing 

configuration of clock system and some GPIO pins in order to 

cooperate with external components of the MCU. This is not 

necessary for standard application running. 

 To switch off this procedure, line “bl SystemInit” in 

startup_stm32f4xx.s file should be commented (line 104 in startup 

file) 

www.emcu.it 

http://www.emcu.it/


15 

STM32 FW library – API structure  

Application code 

stm32f4xx_it.c 

stm32f4xx_it.h 

stm32f4xx.h 
stm32f4xx_ppp.h 

stm32f4xx_ppp.c 

HW Peripherals registers(PPP) 

stm32f4xx_conf.h 

A
p

p
lic

a
ti
o

n
 l
a

y
e

r 
 

A
P

I 
la

y
e

r 
 

S
T

M
3

2
 H

W
 

User Interrupt 

handlers 

User library 

configuration 

Include this file to your 

application files 

To be modified 

in project 

Do not modify 

– you can 

share between 

projects 

www.emcu.it 

http://www.emcu.it/


STM32 – standard peripherals library 
 STM32 standard peripherals library is written in ANSI C 

 For each peripheral there are separate source and  

header files, i.e.: 

 stm32f4xx_gpio.c 

 stm32f4xx_gpio.h 

 To use it, it is required to: 

 #include “stm32f4xx.h” 

 add to the project source files for used peripherals,  

i.e. stm32f4xx_gpio.c for GPIO 

 In stm32f4xx_conf.h uncomment lines with peripherals  

you are using in applications, i.e.: 

 #include "stm32f4xx_gpio.h" 

 Empty interrupt procedures are present in stm32f4xx_it.c  

file. All interrupt functions should be put there. 

 Interrupt function do not require any special coding and  

are void function(void) type 

 Whole manual for the library is available in html format  

(delivered with library package). 

 Most of the peripherals has predefined one or two  

data structures which are used for the configuration.  

After fill up the structure it is used in PPP_Init() functions  

to configure registers in the peripherals 

www.emcu.it 

http://www.emcu.it/


STM32 – library – how to use it ? 

 Function and constant for each peripheral has prefix with its name, like: GPIO, TIM1: 

 ie. GPIO_Init(), ADC_Channel_0, USART_IT_TXE  
 Most of the settings is in 1fromN convention and allow to use concatenation, like: 

GPIO_Pin_0 | GPIO_Pin_1, what means that pins 0 and 1 from will be configured in the same time 

 There are predefined types in stm32f4xx.h file, like:  

 u8 – unsigned char 

 u16 – unsigned short 

 RESET / SET 

 FALSE / TRUE 

 DISABLE / ENABLE 

 Most of the peripherals (PPP) has set of instruction: 

 PPP_DeInit(...) – set all PPP register to its reset state 

 PPP_Init(...) – validation of the configuration for the peripheral 

 PPP_Cmd(ENABLE/DISABLE) – turn on/off PPP peripheral (not affects its clock) 

 PPP_ITConfig(...) – configuration (on/off) of sources of interrupts for PPP peripheral 

 PPP_GetFlagStatus(...) – read flags from the peripheral (polling) 

 PPP_ClearFlag(...) – clear flags from the peripheral 

 PPP_ClearITPendingBit(...) – clear IRQ flag 

 

www.emcu.it 

http://www.emcu.it/


STM32 – library - FAQ 

1. Compiler is reporting a lot of errors like: 

Missing prototype 

GPIO_Pin_0 undefined 

Solution 

 Please check whether in stm32f4xx_conf.h all used library modules are 

uncommented 

 Please check, whether USE_STDPERIPH_DRIVER constant is defined in your 

environment 

 

2. Linker is reporting a lot of errors like: 

 Lab_library.lkf:1 symbol _GPIO_WriteHigh not defined (Debug/main.o) 

Solution 

 Please check whether all library source files are added, stm32f4xx_gpio.c in this 

case. 

 

 

 

www.emcu.it 

http://www.emcu.it/


EXERCISE n.1 

www.emcu.it 

http://www.emcu.it/


Basic configuration exercise 1/2 
 Create a new workspace in Atollic IDE and IMPORT archive project:  

 Ex1 – Demo_on_STM32F4-Discovery.zip 

 The source code is damaged in few places (only few files from /src section). 

 Modification should be done only in: 
• main.c -> main procedures  

• stm32f4xx_it.c -> interrupt procedures, 

• stm32f4xx_conf.h -> selection of correct modules from the library 

 Places to be modified are marked  “?”  symbols and are combined into 5 mini-tasks 

fully described in coming sections.  

 Tasks are visible as well in 

TrueStudio IDE in Tasks tab 

window with EXERCISE prefix. 

 To make them visible, please 

add EXERCISE tag in Tasks 

Tag window 

The task is to detect and eliminate all the issues in order to make program run on 

STM32F4-Discovery board in line with the algorithm from the next slide. 

www.emcu.it 

http://www.emcu.it/


Basic configuration exercise 2/2 

Clock configuration (either by SystemInit() or RCC_Config() functions) 

LEDs IO lines configuration (LED_Config() function) 

External interrupt configuration (Button_Config() function) 

Configuration of Timer3 (LED_Circle state) and Timer4 (MEMS states), TIM3_Config() and 

TIM4_Config() functions 

LED_Blink state:  

LD3..6 are blinking with the same speed 

Possible to test FPU calculation time -> FPU_Test() function 

LED_Circle state:  

LD3..6 are blinking like in the wheel 

(synchronized with Timer3) 

MEMS_Mouse state:  

Extension to previous state of USB_HID option 

(mouse simulation) 

Connect CN5 to PC_USB via micro-USB cable 

MEMS_Balance state:  

LD3..6 are blinking if the board is not in a flat position – based on data coming from MEMS chip 

(LIS302 - U5) – LEDs fully controlled by Timer4 

User 

button 

press 

User 

button 

press 

User 

button 

press 

www.emcu.it 

http://www.emcu.it/


GPIO configuration - theory 
 After the reset all pins are in input floating mode 

 Pins are grouped into 16bit ports (GPIOA, GPIOB, ... GPIOI) 

 Most of the pins tolerates 5V as input signal 

 GPIO ports are configured by several registers [names follow reference manual] which are updated 

by GPIO_Init() function automatically with the values from the GPIO_InitTypeDef structure: 

 

 GPIO_Pin -> GPIO_Pin_0 .... 15, GPIO_Pin_All, GPIO_Pin_None 

 GPIO_Mode: 

 GPIO_Mode_AN  //analog mode 

 GPIO_Mode_IN  //input mode 

 GPIO_Mode_OUT  //output mode 

 GPIO_Mode_AF   //alternate function mode 

 GPIO_OType: 

 GPIO_OType_PP 

 GPIO_OType_OD 

 GPIO_Speed: 

 GPIO_Speed_2MHz  //lowest EMI -> softer edges 

 GPIO_Speed_25MHz 

 GPIO_Speed_50MHz 

 GPIO_Speed_100MHz  //highest EMI -> sharper edges 

 GPIO_PuPd: 

 GPIO_PuPd_NOPULL   

 GPIO_PuPd_UP  

  GPIO_PuPd_DOWN   

www.emcu.it 

http://www.emcu.it/


GPIO configuration - task 
Correct LED_Config() function (main.c file) in order to configure lines 12..15 from 

port GPIOD: 

 In GPIO state (used in LED_Blink and LED_Circle states): 

As general purpose output pins in push-pull configuration with 25MHz speed, 

without pull-up  
  

  

  

  

  

  

 In other states (used in MEMS_Balance and MEMS_Mouse states): 

As IO lines connected to Timer4 (as its outputs) with 25MHz speed (alternate 

function configuration) 
  

  

  

  

  

  

Do not forget about the connection of the clock of used peripherals BEFORE the 

configuration 

www.emcu.it 

http://www.emcu.it/


GPIO configuration - solution 
Correct LED_Config() function (main.c file) in order to configure lines 12..15 from 

port GPIOD: 

 In GPIO state (used in LED_Blink and LED_Circle states): 

As general purpose output pins in push-pull configuration with 25MHz speed, 

without pull-up  
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13| GPIO_Pin_14| GPIO_Pin_15; 

GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; 

GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; 

  

 In other states (used in MEMS_Balance and MEMS_Mouse states): 

As IO lines connected to Timer4 (as its outputs) with 25MHz speed (alternate 

function configuration) 
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 

 

GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4); 

GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_TIM4); 

GPIO_PinAFConfig(GPIOD, GPIO_PinSource14, GPIO_AF_TIM4); 

GPIO_PinAFConfig(GPIOD, GPIO_PinSource15, GPIO_AF_TIM4); 

Do not forget about the connection of the clock of used peripherals BEFORE the 

configuration 
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); 

www.emcu.it 

http://www.emcu.it/


Clock configuration - theory 

 After the reset system clock is set to HSI = 16MHz 

 After the reset all peripherals (GPIOs as well) have clock disconnected 

 There is Clock Security System for HSE monitoring. In case of problems 

with HSE - an automatic switch to HSI (reset state) occurs 

 It is possible to send main clock to output pins (MCO1 or MCO2) -> up to 

100MHz 

 It is not possible to clock core and main peripherals by low speed oscillators 

(LSI and LSE). 

 When using STM32 standard firmware library there is an automatic clock 

configuration performed before main code, which switch clock to its 

maximum frequency (168MHz) based on HSE source. It is done by 

SystemInit() function called from startup file before the main(). 

www.emcu.it 

http://www.emcu.it/


26 

HSI 
HSE 
PLLCLK 
LSE 

SYSCLK 
HSE 
PLLCLK MCO2 /1..5 
PLLI2S 

PLL48CLK (USB FS, SDIO & RNG) 

CSS 

HSE Osc 
OSC_OUT 

OSC_IN 

4-26 MHz 

PLLCLK 

HSI RC 

16 MHz 

/ M 

HSE 

HSI    SYSCLK 

168 MHz max 

/ P 

/ Q 

/ R 

x N 

PLL 

/1..5 MCO1 

Clock configuration - task  

VCO 

8MHz 

48MHz 

168MHz 

PA8 

PC9 

RCC_PLLConfig() 

RCC_PLLCmd() 

RCC_SYSCLKConfig() 

RCC_HSEConfig() 

 Calculate correct values of parameters M,N,P,Q and insert them in RCC_Config() function 

(main.c file). Target frequencies are put in RED on below diagram. 

 Comment line 104 (C /**/ or C++ style //) in startup_stm32f4xx.s file (src section) – turn off 

initial clock configuration done by SystemInit() function 

 Uncomment line 110 in main.c file (run the clock configuration function RCC_Config() 

RCC_Clk_Out() 

/M [0..63] *N [192..432] /P [2,3,6,8] /Q [4..15] 

Max PLL VCO is 432MHz 

PLL input 1-2MHz 

www.emcu.it 

http://www.emcu.it/


27 

HSI 
HSE 
PLLCLK 
LSE 

SYSCLK 
HSE 
PLLCLK MCO2 /1..5 
PLLI2S 

PLL48CLK (USB FS, SDIO & RNG) 

CSS 

HSE Osc 
OSC_OUT 

OSC_IN 

4-26 MHz 

PLLCLK 

HSI RC 

16 MHz 

/ M 

HSE 

HSI    SYSCLK 

168 MHz max 

/ P 

/ Q 

/ R 

x N 

PLL 

/1..5 MCO1 

Clock configuration - solution  

VCO 

8MHz 

48MHz 

168MHz 

PA8 

PC9 

RCC_PLLConfig() 

RCC_PLLCmd() 

RCC_SYSCLKConfig() 

RCC_HSEConfig() 

 Calculate correct values of parameters M,N,P,Q and insert them in RCC_Config() function 

(main.c file). Target frequencies are put in RED on below diagram. 

 Comment line 104 (C /**/ or C++ style //) in startup_stm32f4xx.s file (src section) – turn off 

initial clock configuration done by SystemInit() function 

 Uncomment line 110 in main.c file (run the clock configuration function RCC_Config() 

RCC_Clk_Out() 

/M [0..63] *N [192..432] /P [2,3,6,8] /Q [4..15] 

8 336 2 7 

Max PLL VCO is 432MHz 

PLL input 1-2MHz 

www.emcu.it 

http://www.emcu.it/


Clock Scheme – complete view  

28 

HSI 

HSE 

PLLCLK MCO1 /1..5 

LSE 

   SYSCLK 

HSE 

PLLCLK MCO2 /1..5 

PLLI2S 

LSI RC 

32.768KHz  
/2, to 31 

LSE Osc 

OSC32_IN 

OSC32_OUT 

~32KHz  
IWDGCLK 

RTCCLK 

TIM5 IC4 

HSE 

/ 

2
, 

2
0
 

MACTXCLK 

MACRXCLK 
MACRMIICLK 

USB HS 

 ULPI clock 

/ P 

/ Q 

/ R 

x N 

PLLI2S 

I2SCLK 

Ext. Clock 

SPI2S_CKIN 

PLLI2SCLK 

VCO 

PCLK1 up to 

42MHz 

If (APB2 pres =1)      

x1    Else        

x2 

If (APB1 pres    

    =1)      x1 

Else         x2 

PCLK2 up to 

84MHz 

 TIMxCLK 

 TIM2..7,12..14 

APB1 

Prescaler 

/1,2,4,8,16 

TIMxCLK 

TIM1,8..11  

APB2 

Prescaler 

/1,2,4,8,16 

HCLK up to 

168MHz 

AHB Prescaler 

/1,2…512 

/8 SysTick 

PLL48CLK  

(USB FS, SDIO & RNG) 

CSS 

HSE Osc 
OSC_OUT 

OSC_IN 

4 -26 MHz 

PLLCLK 

HSI RC 
16MHz 

/ M HSE 

HSI 

   SYSCLK 

168 MHz 

max 

/ P 

/ Q 

/ R 

VCO 

x N 

PLL 

Ethernet 

PHY 

USB2.0 

PHY 

www.emcu.it 

http://www.emcu.it/


Interrupts - theory 

 After the reset all peripheral interrupts are disabled, vector table is located 

at the beginning of the Flash memory 

 Interrupt should be: 

 enabled at peripheral -> exact source of the interrupt 

 configured in NVIC (interrupt controller) -> priorities, location in memory 

 programmed in stm32f4xx_it.c -> body of its procedure 

 In addition external interrupt requires: 

 Configuration of dedicated IO pin as input (GPIO module) 

 Specify if it will be event or interrupt mode (EXTI module) 

 Select proper port to source interrupt at  the selected channel (i.e 

Channel 1 can be sourced by Pin 1 from any port (SYSCFG module) 

 Enable external interrupt channel (EXTI module) 

 Select sensitivity of the channel (raising or falling edge) (EXTI module) 

 

 

www.emcu.it 

http://www.emcu.it/


EXTI module: from pin to NVIC 
GPIOA_0 

GPIOB_0 

GPIOI_0 

EXTI 

Channel 0 

GPIOA_1 

GPIOB_1 

GPIOI_1 

Channel 1 

GPIOA_15 

GPIOB_15 

GPIOI_15 

Channel 15 

CORTEX M3/M4 

NVIC Exti_0 

Exti_1 

Exti_2 

Exti_3 

Exti_4 

Exti_9-5 

Exti_15-10 

Wakeup 

RTC Tamper 

RTC Wkup 

Event 

Interrupt 

ENABLE 

DISABLE 

In
p

u
t 

fl
o

a
ti

n
g

 

PVD_IRQ 

RTC_IRQ 

G
P

IO
_

E
X

T
IL

in
e

_
C

o
n

fi
g

()
 

G
P

IO
_

In
it

()
 

EXTI_Init() 

NVIC_Init() 

USB OTG HS Wkup 

ETH Wkup 

USB OTG FS Wkup 

RTC_Alarm 

PVD 

www.emcu.it 

http://www.emcu.it/


EXTI & NVIC configuration 
 GPIO_InitTypeDef -> select input pin and configure it in input mode 

 GPIO_EXTILineConfig -> configure input multiplexers 

 EXTI_InitTypeDef: 
 EXTI_Line -> EXTI_Line0 .... 15 

 EXTI_Mode: 

 EXTI_Mode_Event (for wakeup the core without interrupt generation) 

 EXTI_Mode_Interrupt 

 EXTI_Trigger: 

 EXTI_Trigger_Rising 

 EXTI_Trigger_Falling 

 EXTI_LineCmd: 

 ENABLE (turn on the channel) 

 DISABLE 

 NVIC_InitTypeDef: 
 NVIC_IRQChannel: PPP_IRQn *) 

 NVIC_IRQChannelPreemptionPriority: 0..15 (lower number, higher priority) 

 NVIC_IRQChannelSubPriority: 0..15 

 NVIC_IRQChannelCmd -> ENABLE/DISABLE 

 

*) PPP – name of interrupt vector defined in stm32f4xx.h (or described in library manual) 

www.emcu.it 

http://www.emcu.it/


Interrupts - task 
Correct Button_Config() function (main.c file) in order to make User button 

working: 

 Configure GPIOA, pin0 as input (GPIO module) 

   

 Configure pin as working with the port (no other peripheral) (SYSCFG module) 
  

 Configure its mode (interrupt) and sensitivity (rising edge) (EXTI module) 
  

  

  

  

  

 Configure interrupt vector and its priorities (NVIC module) 
  

  

  

  

 

Correct interrupt vector function - EXTI0_IRQHandler() in stm32f4xx_it.c file 

 Clear the interrupt flag:  

www.emcu.it 

http://www.emcu.it/


Interrupts - solution 
Correct Button_Config() function (main.c file) in order to make User button 

working: 

 Configure GPIOA, pin0 as input (GPIO module) 

 can be left untouched after the reset due to default configuration (input floating)  

 Configure pin as working with the port (no other peripheral) (SYSCFG module) 
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA,EXTI_PinSource0); 

 Configure its mode (interrupt) and sensitivity (rising edge) (EXTI module) 
EXTI_InitStructure.EXTI_Line = EXTI_Line0 ; 

EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; 

EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; 

EXTI_InitStructure.EXTI_LineCmd = ENABLE; 

EXTI_Init(&EXTI_InitStructure); 

 Configure interrupt vector and its priorities (NVIC module) 
NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn ; 

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

 

Correct interrupt vector function - EXTI0_IRQHandler() in stm32f4xx_it.c file 

 Clear the interrupt flag:  
EXTI_ClearITPendingBit(EXTI_Line0); 

www.emcu.it 

http://www.emcu.it/


Timer configuration - procedure 

 Turn on Timer clock at RCC module (APBx bus) using function 

RCC_APBxPeriphClockCmd() 

 

 Configure timer base module using TIM_TimeBaseInitTypeDef structure for 

selected timer and then function TIM_TimeBaseInit() 

 

 Configure TIM_OCInitTypeDef structure and then function TIM_OCxInit() for 

selected channels of the timer. 

 

 Initiate preload autoreload register using TIM_OCxPreloadConfig()  function 

and preload of capture compare registers using TIM_ARRPreloadConfig() 

function for each used channel 

 

 Enable the timer using TIM_Cmd() function 

www.emcu.it 

http://www.emcu.it/


Timer configuration - structures 
 There are two structures to be filled in in order to configure selected channel 

to PWM generation: 

 Time Base -> TIM_TimeBaseInitTypeDef 
 TIM_Period – autoreload value 

 fpwm = TIM_counter_clk/(Period+1) 

 TIM_Prescaler - [0  -> 216-1] – TIM3 input clock prescaler value 

 TIM_counter_clk=APB1_clk/(prescaler+1) 

 TIM_ClockDivision – used for input digital filters, can be left 0 

 0 

 TIM_CounterMode – TIM_CounterMode_ [Up/Down/CenterAligned1..3] 

 TIM_CounterMode_Up 

 Capture Compare section for channel x -> TIM_OCInitTypeDef 
 TIM_OCMode – different configurations for Output Compare mode 

 TIM_OCMode_PWM1 

 TIM_OutputState – input mode: capture enable, output mode: output enable 

 TIM_OutputState_Enable 

 TIM_Pulse – [0  -> 216-1] – capture compare for channel x register value 

 Duty_cycle = (TIM_Pulse/TIM_Period)*100% 

 TIM_OCPolarity – output signal active high or low 

 TIM_OCPolarity_High 

 

www.emcu.it 

http://www.emcu.it/


Timer3 – Output Compare mode - task 

16-Bit Prescaler 

ITR 1..4 

Trigger/Clock 

Controller 

Trigger Output 

APB1 clk 

Auto Reload REG 

+/- 16-Bit Counter 

CH1 

CH2 

CH3      

CH4      

ETR 

Capture Compare 

Capture Compare 

Capture Compare 

Capture Compare 

CH1 

CH2 

CH3      

CH4      

TIM_Period 

TIM_Pulse 

TIM_Prescaler 

TIM_CounterMode 

TIM_OCMode 

TIM_OutputState 

TIM_OCPolarity 

TIM_ClockDivision 

TIM_TimeBaseInit() 

TIM_TimeBaseInitTypeDef 

TIM_OCxInit() 

TIM_OCInitTypeDef 

 Correct TIM3_Config() function in main.c file in order to configure Timer3 in output compare 

mode to generate update/overflow interrupts with 2Hz frequency and in the meantime 

capture/compare interrupt on channel 1. In Timer3 interrupt routine there is a control of LD3..6. 

 Result: in LED_Circle state of main loop LD3..6 should blink with 1Hz frequency and with 

phase shift to the next one (circle flashing) 

 

 

84MHz 

84MHz 

100kHz 

2Hz/50% 

100kHz 

Parameter value 

TIM_Prescaler 

TIM_Period 

TIM_Pulse 

TIM3_IRQn =>TIM3_IRQHandler() in stm32f4xx_it.c 

www.emcu.it 

http://www.emcu.it/


Timer3 – Output Compare mode - solution 

16-Bit Prescaler 

ITR 1..4 

Trigger/Clock 

Controller 

Trigger Output 

APB1 clk 

Auto Reload REG 

+/- 16-Bit Counter 

CH1 

CH2 

CH3      

CH4      

ETR 

Capture Compare 

Capture Compare 

Capture Compare 

Capture Compare 

CH1 

CH2 

CH3      

CH4      

TIM_Period 

TIM_Pulse 

TIM_Prescaler 

TIM_CounterMode 

TIM_OCMode 

TIM_OutputState 

TIM_OCPolarity 

TIM_ClockDivision 

TIM_TimeBaseInit() 

TIM_TimeBaseInitTypeDef 

TIM_OCxInit() 

TIM_OCInitTypeDef 

84MHz 

84MHz 

100kHz 

2Hz/50% 

100kHz 

Parameter value 

TIM_Prescaler 839 

TIM_Period 24999 

TIM_Pulse 12500 

TIM3_IRQn =>TIM3_IRQHandler() in stm32f4xx_it.c 

 Correct TIM3_Config() function in main.c file in order to configure Timer3 in output compare 

mode to generate update/overflow interrupts with 2Hz frequency and in the meantime 

capture/compare interrupt on channel 1. In Timer3 interrupt routine there is a control of LD3..6. 

 Result: in LED_Circle state of main loop LD3..6 should blink with 1Hz frequency and with 

phase shift to the next one (circle flashing) 

 

 

www.emcu.it 

http://www.emcu.it/


FPU configuration in STM32  

TrueStudio 

• In order to use hardware support of floating point calculations 

please select the option for floating point:  

“Mix HW/SW implementation”  

in project settings: 

Project->Properties->C/C++ Build->Settings->Tool Settings tab 

Target windows in Assembler, C Compiler and C Linker sections 

 

 When exit from debug session program stops  

working.  

Reset of the MCU will cause the restart of the  

program. 

 

 On the STM32F4_Discovery board there is  

embedded STLink debugger working in  

SWD mode only. 

www.emcu.it 

http://www.emcu.it/


FPU - task 

 inside the code there is a function FPU_Test() within LED_Blink part of the main 

loop of the code 

 within the function there are two random floating point number generated and 

basic operations are performed. 

 by usage of System Timer (SysTick) it is possible to check how many system 

clock cycles each operation on two floating point argument is using: 

 

 time_add – addition 

 time_sub– subtraction 

 time_mul– multiplication 

 time_div – division 

 using Atollic STM32 TrueStudio configuration it is possible to turn on and off the 

hardware support for floating point operations -> please refer to the previous 

slide 

 

TASK: please check how many clock cycles uses each operation with and without 

hardware floating point support from the core (usage of FPU module) 
 

No FPU FPU 

www.emcu.it 

http://www.emcu.it/


FPU - solution 

 inside the code there is a function FPU_Test() within LED_Blink part of the main 

loop of the code 

 within the function there are two random floating point number generated and 

basic operations are performed. 

 by usage of System Timer (SysTick) it is possible to check how many system 

clock cycles each operation on two floating point argument is using: 

 

 time_add – addition 

 time_sub– subtraction 

 time_mul– multiplication 

 time_div – division 

 using Atollic STM32 TrueStudio configuration it is possible to turn on and off the 

hardware support for floating point operations -> please refer to the previous 

slide 

 
 

No FPU FPU 

160 19 

165 19 

120 19 

247 30 

www.emcu.it 

http://www.emcu.it/


Fine tuning of the application - task 
 The MEMS_Mouse state is working in so called “reverse orientation” like in the 

plane, like on figure A. 

 The task would be to change way of operation to work like on the figure B. The 

answer to this question is located in the file stm32f4xx_it.c, see lines 330…360. 

 

Figure A 

CN5 

USB OTG 

STLink 

Figure B 

CN5 

USB OTG 

STLink 

PC cursor 

movement direction 

Board movement 

direction 

www.emcu.it 

http://www.emcu.it/


More info 

STM32F4xx are here 

STM32 motor control is here 

STM32W is here 

SPEAr  is here 

ST-Link-v2 is here 

M24LRxx memory + RFID is here 

Power Line Module is here 

MEMS is here 

ATOLLIC tips and tricks are here 

 

In general information concerning STM32xx, STM8xx, MEMS, 
RFID, SMART Meter, ZigBee, Blue Tooth, etc are here 

 
 www.emcu.it 

http://www.emcu.it/STM32F4xx/STM32F4xx.html
http://www.emcu.it/STM32/STM32-MotorControl/STM32-MotorControl.html
http://www.emcu.it/STM32/STM32Wxx/STM32Wxx.html
http://www.emcu.it/SPEAr/SPEAr.html
http://www.emcu.it/ST-LINKv2/ST-LINKv2.html
http://www.emcu.it/RFID/RFID.html
http://www.emcu.it/PLM/PLM.html
http://www.emcu.it/MEMS/MEMS.html
http://www.emcu.it/ARM_Compiler/ATOLLIC/ATOLLIC_tips_and_tricks.html
http://www.emcu.it/
http://www.emcu.it/

