STM32F4 family – Практические занятия

Atollic TrueSTUDIO STM32 + STM32F4 discovery kit modified by **www.emcu.it**

Thanks to the collaboration of: Alexander A. Shchitnikov

Прежде чем начать

- Потребуется ПК с Windows 2000/ХР/Vista/7 и правами администратора (требуется для работы ST-Link программатора/отладчика)
- Установите последнюю версию Atollic TrueStudio STM32
- Подготовить кабель USB cable type A to mini-B
- Подготовить отладочную плату STM32F4-DISCOVERY
- Проверить наличие обновлений для ST-Link на сайте www.st.com/stm32f4-discovery

STM32F4-DISCOVERY знакомство

- Плата STM32F4-DISCOVERY состоит из двух частей: программатора/отладчика ST-Link и отладочной платы с МК семейства STM32F4**(STM32 на базе Cortex-M4)
- ST-Link может использоваться в качестве внутрисхемного программатора других STM32 микроконтроллеров (переключатель SEL отключен).Работает исключительно в режиме SW
- Отладочная часть содержит МК STM32F407VGT6 (1MB Flash,192kB RAM, 100 pin package) со встроенной тактируемой системой(основная частота HSE генератора 8Mhz)
- Также плата включает:

MEMS акселлерометр (LIS302DL) подключенный через SPI1 Простой пользовательский интерфейс(кнопка + 4 светодиода) Audio codec с аудиовыходом MEMS микрофон (MP45DT02) USB OTG разъем с 2 светодиодами

Atollic TrueStudio/STM32 Введение

- Запустите TrueStudio STM32 Pro
- Введите путь к новой или уже существующей рабочей области (workspace)
- Лучше не ставить метку "использовать по умолчанию и никогда больше не спрашивать" (Use this as the default and do not ask again)
- При создании нового проекта появляется окно wellcom window -> выберите Start Using TrueStudio

Atollic TrueStudio/STM32 Импорт существующего проекта (.ZIP) в рабочую область

- Выберите File->Import
- B Import window выберите General а затем Existing Project into Workspace
- Нажмите Next

B Import project window:

- Добавте архивированный файл
- Выберите проект из файла
- Нажмите Finish

a Import		
Import Projects Select a drectory to searc	th for existing Eclipse projects.	
 Select root directory: Select archive file: Brojects: 	C:\Ex1 - Demo_on_STM32F4-Discovery.zlp	Browse Browse
F4_demo (F4_dem	00)	Select All

 В результате весь проект копируется в workspace и автоматически компилируется

Atollic TrueStudio/STM32 Экспорт существующего проекта в архив (.ZIP)

🗃 Export

Archive fil Export reso

H 🔽 🎒

Filter Type

To archive.

Options -

🔘 Saye

🗹 Compr

- Выберите File-Export
- In Export window выберите вкладку General
- Нажмите Next

В окне Archive file:

- Выберите проект в текущей workspace
- Выделите настройки проекта(.cproject, .project и связующий файл *.ld)
- Выберите выходной формат (.zip,.tar)
- Если необходимо выберите сжатие содержимого
- Выделите Create directory structure for files
- Finish

	🛢 Export	
	Select Export resources to an archive fie on the local file system.	7.
	Select an expect destination: Type filter text	
e Irces to an archive file on the l	acal fie system.	
F4_demo	 ✓ ➡ . cproject: ✓ ➡ .jupiter ✓ ➡ .project ✓ ➡ F4_demo.elf.launch ✓ ➡ stm 32_Flash.ki 	
s Saloct All Dos le: Cr)Ext - Demo_or_STM3	elect Al 2F4-Discovery.zp 🛛 🔽 Browse	
i gip Format Lear format ass the contents of the File)	 Greate directory structure for files Create only selected directories 	

Atollic TrueStudio/STM32 Проект – структура файлов

- После создание проекта, следующая файловая структура появляется в project explorer:
 - Binaries
 - Includes
 - Utilities -> процедуры для управления ГУИ на отладочной плате
 - Src главная директория исходников (main.c main.h)
 - Libraries -> ST и CMSIS библиотеки
 - CMSIS
 - STM32Fxx_StdPeriph_Driver
 - Debug
- Физическое расположение файлов проекта на HDD включают следующие сабдиректории:
 - .metadata конфигурация workspace;
 - <Prj_name> -> главная директория проекта, включающая исходники, компановщики(*.ld), object files и executables
 - .coverege -> используется для анализа плотности кода (не доступно в бесплатной версии)
 - Settings ->настройки hardware выбранного МК, отладочной платы и программатора/отладчика
 - Debug -> объектные файлы испольняемого проекта
 - Libraries
 - Utitlities
 - src
- При исользовании внешних исходников имеюются лишь папки .settings и debug

Atollic TrueStudio/STM32 Проект – работа с файлами

- Самый простой способо добавить new.c файл в проект скопировать его в одну из директорий. Файл будет определен автоматически и добавлен в компилируемые и связывающие файлы. Другий способ – импортировать или установить внешнюю ссылку
- Важная опция Project Explorer действительны для файлов и каталогов(правый щелчок мыши):
 - Exclude from built для того, чтобы не компилировать часть кода
 - Delete физическое удаление всех выделенных файлов с HDD
 - Import физическое копирование выделенного файла в каталог проекта
- Открыть/создать новый проект в той же рабочей области приведет к копированию библиотек, избежать этого можно используя настройки удаленного доступа.

Atollic TrueStudio/STM32 Tasks editor - возможности

Вернуться позже...задачи

- Иногда возникает необходимость вернуться к определенному участку кода позже.
 Чтобы сделать это:
- Правый клик мыши на номер строки к которой потребуется вернуться.
- Вставте комментарий в стиле С (/**/) с первым словом соответствующем определенному ключевуму слову (task tags)
- Сделать task tag видимыми window->preference->C/C++ section-> Task Tags
- Tasks list будет виден в нижней части экрана, двойной щелчек на задаче откроет определенный файл в месте где была поставлена задача
- Чтобы удалить задачу достаточно щелкнуть правой кнопкой мыши на задаче и выбрать delete или удалить ключевое слово

ВНИМАНИЕ- определенные пользователем task tag не будут экспортированы вместе с проектом в новую рабочую область. Они должны быть заданы заново.

s Window Help	(managed)			
New Window New Editor	Preferences type filter text	Task Tans		
Open Perspective	Beneral ■ C(C++	Strings indicating tasks in C/C+++	comments. The entry marked as	default wil be
y Customize Perspective γ Save Perspective As Reset Perspective Close All Perspectives Navigation Ful Screen Perferences	Appearance Build Code Style Code	Tag FEME TODO (default) XXX	Priorby Normal Normal Normal	Edt. Remo
<pre>void f GPI0_InitStructure; clock on MCO1 pin(PA8)/MCO2 PIOA peripheral */ lockCmd(RCC_AHB1Periph_GPIOA O1 pin(PA8) in alternate fun; ue.GPI0 Pin - GPI0 Pin 8;</pre>	Claudescr Heige Model Vaidation Review Tasks Tosan Terminal Testing PUL2 Diagrams WL2 Stagrams WL2 Stagrams	Case sensitive task tag names		
ure_GPIO_Speed = GPIO_Speed_:			Restore Defau	uts Appl
Sure.GPIO_Node = GPIO_Mode_APS Sure.GPIO_OType = GPIO_OType 1	0		ОК	Cance

	2178	11	EXER	CISE	Cal	culate	and c	omplet	e belov	clock	configura	tion pa	arameters
	179	# (lefine	PLL	M	2	//D	63					
	18D	# 4	lefine	PLL	N	?	//1	9243	2				
	181	# 0	lefine	PLL	Р	2	77 D	Ζ,3,6,	8]				
		<							111				
🔀 Problems 🖉 Tasks 🖾 📮 Console 🖽 Properties													
	3 items												
	-	1	Descript	ion					Resource	Path	h	Locat	Турс
			EXERCIS	E Calcu	ilate a	and complet	e below c	lack.co	main.c	/F4_	demo/src	line 178	C/C++ Task
			TODO ha	indle m	areth	han one sine	gle MPS si	ze packet	usb_dcd_in	t.c JF4_	demo/Librari	line 127	C/C++ Task
			TODD ha	ndle m	are th	an one sine	gle MPS si	ze packet	usb_dcd_in	t.c JF4_	demo/Librari	line 529	C/C++ Task

Atollic TrueStudio/STM32 Компановка проекта и конфигурация режима отладки

- Выберите проект в project explorer
- Выберите конефигурации отладки
 - Project -> Build Configuration-> Set Active
- Собрать проект
 - Project-> Build All или Ctrl+B
- Конфигурация отладки
 - Run->Debug Configurations
 - Выделить "Autostart local GDB server"
 - Выделить SWD
- Запустить отладку
 - Run-> Debug или F11

Atollic TrueStudio/STM32 Запуск режима отладки

• Выделить GDB аппаратный отладчик

- Запустить программу
 - Run->Resume или F8 или
- Завршить отладку
 - Run -> Terminate or F12 or
- Добавить/удалить breakpoint
 - Двойной щелчек на номере строки
- Удалить все breakpoints
 - Run->Remove all breakpoints or

Atollic TrueStudio/STM32 Режим отладки

- Чтобы наблюдать **3**a состоянием переменных -> перетащите их названия BO Expression вкладку ипи правый щелчк мыши И выберите "Добавить наблюдаемые переменные" (Add watch expression).
- Чтобы установить Breakpoint
 -> двойной щелчек по строке. Breakpoint можно вкл/выкл во вкладке Breakpoints.
- Вся важная информация о состоянии регистров переферийных устройств также доступна в режиме отладки (состояние сброса, адресс, текущее состояние и описание).

Atollic TrueStudio/STM32 Режим отладки - управление

 Возможно отслеживать изменение в регистрах общего назначения -> вкладка Registers(любые изменения сигнализируются желтым выделением)

🖾= Variables 🔍 Breakpoints 🛲 SFR:	🛋 Modules 🥳 Ex
Name	Yalue
🖃 👬 Man	
01 Wi	1073816576
WK r1	1
III 12	4
88 B	4
oloi r4	536870992
6161 r5	0
olo 16	1
DIC 77	526970006

• Отладочная панель

STM32 – начальные процедуры

- Минимальные требования для запуска STM32 записать два первых слова таблицу векторов:
 - Первое слово инициализирует указатель стека (Stack Pointer Value)
 - Второе слово адресс процедуры сброса (adress of reset procedure)
- Рекомендуется применять вектора обработки ошибок (хотя бы векор аппаратного сбоя HardFault)
- При использовании стандартной библиотеки стандарта CMSIS, таблица векторов определена в стартовом файле (startup), который определен для всех семейств и сборок.
- В случае STM32f407VGT6 и Atollic, стартовый файл называтся startup_stm32fxx.s и расположен в папке /src внутри проекта.
- В ST library предусмотрены дополнительные операции выполняющиеся непосредственно перед main(). Наиболее важная SystemInit(), расположенная в system_stm32f4xx.c. Данная функция настраивает систему тактирования и порты общего назначения в соответствии с требованиями внешних условиях. Это не очень важно при использовании стандартных настроек.
- Для отключения этой функции, стока "bl SystemInit" в startup_stm32fxx.s должна быть закомментирована. (строка 104)

STM32 стандартные библиотеки - интерфейс прикладного программирования (API)

STM32 – стандартная библиотека периферии

- Для STM32 стандартная периферийная библиотека написана на ANSI C
- Для каждого устройства предусмотренно два раздельных файла, например:
 - stm32f4xx_gpio.c
 - stm32f4xx_gpio.h
- Для этого необходимо:
 - #include "stm32f4xx.h"
 - Добавить в исходные файлы используемую периферию, i.e. "stm32f4xx_gpio.c" для портов общего назначения
- В "stm32f4xx_conf.h" снимите комментарий с используемых переферийных устройств:
 - #include "stm32f4xx_gpio.h"
- Пустые процедуры прерываний представлены в stm32f4xx_it.c. Все прерывания должны быть описаны здесь.
- Функции прерываний не требуют специального синтаксиса и описываются в виде: void funct(void)
- Вся документация о библиотеке доступна в html формате: stm32f4xx_dsp_stdperiph_lib_um.chm
- В основном периферий ные устройства определены одой или двума структурами данных, которые используются при конфигурации. После заполнения структуры используются в **PPP_Init()** функциях, для конфигурации регистров переф. устройств

C/C++ - F4_demo/src/stm32f4x	x_conf.h - Atollic TrueSTUDIO3 for STMicroelec
ile Edit Source Refactor Navigate	Search Project Run Manuals Window Help
📬 • 🖩 🖻 🖆 🔒 🗄 4 • 1	íð • 82 • íð • Ø • ≪ • ⊛ • ∳• • (
🍐 Project Explorer 🖇 👘 🗖	🔄 main.c 🛛 📓 startup_stm32f4xx.s 🛛 🔊 stm32f
🖻 😫 😨 🎽	22 /* Define to prevent recursive
🗄 🎏 F4_demo	23 #ifndefSTM32F4xx_CONF_H
🗷 🎆 Binaries	24 #defineSTN32F4xx_CONF_H
🗉 🔊 Includes	25
🗎 🥵 Libraries	20 #11 defined (HSE_VALUE)
🖹 🚖 CMSIS	78 #undet HSI Vilue
🖽 🔁 Device	29 #define HSE VALUE uint32
🗄 👝 STM32_USB_Device_Libra	30 #endif /* HSE VALUE */
E CTM22_USB_OTG_Driver	31
Brees LISE Sutting	32⊖/* Includes
🖬 🎦 Cob_becangs	33 /* Uncomment the line below to
	34 #include "stm32f4xx_adc.h"
🚊 🔓 main.c	35 #include "stm32f4xx_can.h"
iabi iabi	36 #include "stm32f4xx_crc.h"
⊞- <mark>S</mark> startup_stm32f4xx.s	378// #include "stm32f4xx_cryp.h"
🔄 庙 stm32f4xx_conf.h	38 // #include "stm32f4xx_dac.h"
⊡ stm32f4xx_it.c	39 #include "stm3214xx_dogmeu.n"
⊞ 🔟 stm3254xxr_lt.h	41 #include "stm22f4xx dma b"
I isystem_stm32f4xx.c	42 #include "stm32f4xx exti.h"
l≝∼l⊆ tinγ_printf.c	43 #include "stm32f4xx flash.h"
📄 system_stm32t4xx.c. bid	440// #include "stm32f4xx fsmc.h"
🖬 📂 Debug	45 // #include "str32f4xx hash.h"
	46 #include "stm32f4xx_gplo.h"
E sturre_regaring	47 #include "stm32f4xx_i2c.h"

STM32 – библиотека – как ее использовать?

- Функции и переменные для каждого периферийного модуля, имеют приставку в названии: GPIO, TIM1-> GPIO_Init(), ADC_Channel_0, USART_TX_TXE
- Большинство настроек имеют обозначения от 1 до N и к ним можно применять конкатенацию: GPIO_Pin_0|GPIO_Pin_1, это значит, что pin0 и pin1 будут настроены в одно время.
- B stm32f4xx.h определены типы данных:
 - u8 unsigned char
 - u16 unsigned short
 - RESET/SET
 - FALSE/TRUE
 - DISABLE/ENABLE
- Большинство периферийных уст-в имеет следующий набор инструкций
 - PPP_DeInit(...) перевести устройство в начальное состояние
 - PPP_Init(...) подтверждение конфигурации устройства
 - PPP_Cmd(ENABLE/DISABLE) вкл/выкл устройство
 - PPP_ITConfig(...) настройка прерывания устройства
 - PPP_GetFlagStatus(...) прочитать значение флага устройства
 - PPP_ClearFlag(...) очистить флаг в устройстве
 - PPP_ClearITPendingBit(...) очистить флаг запроса прерывания

STM32 – библиотека – как ее использовать?

• Компилятор сообщает о множестве ошибок, таких как:

Missing prototype GPIO_Pin_0 undefined

Решение:

Убедитесь, что в файле stm32f4xx_conf.h используемые модули библиотеки не закомментированы

Убедитесь, что константа USE_STDPERIPH_DRIVER определена в вашей среде

• Линкер сообщает о множестве ошибок, таких как:

Lab_library.lkf:1 symbol_GPIO_WriteHigh not defined (Debug/main.o)

<u>Решение:</u>

Убедитесь, что исходные файлы библиотеки добавлены, в данном случае stm32f4xx_gpio.c

Упражнение №1

Базовые настройки. Упражнение 1/2

• Создайте новую рабочую область (workspace) в среде Atollic и импортируйте заархивированный проект:

Ex1-Demo_on_STM32F4-Discovery.zip

- Исходный код поврежден в нескольких местах (пара файлов из раздела /src)
- Изменения должны быть выполены только в:
 - main.c ->основные процедуры
 - stm32f4xx_it.c-> прерывания
 - stm32f4xx_conf.h-> выбор библиотечных модулей
- Места которые необходимо изменить помечены символом "?" и сгруппированны в 5 мини-задач, полностью описанных в следующей секции
 секции
- Задачи можно увидеть во вкладке задач(Tasks Tab), с приставкой EXERCISE
- Чтобы сделать их видимыми добавте метку EXERCISE в Tasks Tag window

2178	#define PLL M	?	//063					
179	#define PLL_N	?	//192432					
180	#define PLL_P	2	//[2,3,6,8]					
181	#define PLL_Q	?	//415					
	<		III					
🔝 Problems 🧟 Tasks 🙁 🔪 🚍 Console) 📰 Properties 🖋 Expressions 🔗 Search								
12 items	12 items							
🖌 🕴 Description 🔺								
Clock configuration - comment this line and uncomment REC_Config() to configure dock system								
Clock configuration - task - fil M,N,P,Q parameters								

Задачи можно увидеть во вкладке задач(Tasks Tab), с приставкой EXERCISE

Базовые настройки. Упражнение 2/2

Настройка портов ввода/вывода. Теория

- После сброса все ножки находяться в состоянии input floating(неподтянутый вход).
- Ножки сгруппированны в 16 битные порты (GPIOA, GPIOB,..., GPIOI)
- Большинство пинов толерантны к входному сигналу 5В
- Порты настраиваются несколькими регистрами, которые определяются функцией GPIO_Init(), в соответствии со значениями структуры GPIO_InitTypeDef:

//input mode

//output mode

- GPIO_Pin -> GPIO_Pin_0 15, GPIO_Pin_All, GPIO_Pin_None
- GPIO_Mode:
 - GPIO_Mode_AN //analog mode
 - GPIO_Mode_IN
 - GPIO_Mode_OUT
 - GPIO_Mode_AF //alternate function mode
- GPIO_OType:
 - GPIO_OType_PP
 - GPIO_OType_OD
- GPIO_Speed:
 - GPIO_Speed_2MHz
- //lowest EMI -> softer edges

- GPIO_Speed_25MHz
- GPIO_Speed_50MHz
- GPIO_Speed_100MHz

//highest EMI -> sharper edges

- GPIO_PuPd:
 - GPIO_PuPd_NOPULL
 - GPIO_PuPd_UP
 - GPIO_PuPd_DOWN

Настройка портов ввода/вывода. Задача

Исправте LED_Config() функцию (main.c), чтобы настроить выводы 12..15 порта GPIOD:

 В случаях GPIOD (используется в LED_Blink и LED_Circle): Как выходные выводы общего назначения, скоростью 25МГц, без подтягижки к единице

 В других случаях (используется в MEMS_Balance и MEMS_Mouse): Выводы подключены к Timer4(как выходы) со скоростью 25MHz (альтернативное использование)

Не забудьте подключить тактирование ПЕРЕД конфигурацией!

Настройка портов ввода/вывода. Решение

Исправте LED_Config() функцию (main.c), чтобы настроить выводы 12..15 порта GPIOD:

- В случаях GPIOD (используется в LED_Blink и LED_Circle): Как выходные выводы общего назначения, скоростью 25МГц, без подтягижки к единице GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
- В других случаях (используется в MEMS_Balance и MEMS_Mouse): Выводы подключены к Timer4(как выходы) со скоростью 25MHz (альтернативное использование)

```
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
```

```
GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_TIM4);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource14, GPIO_AF_TIM4);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource15, GPIO_AF_TIM4);
```

Не забудьте подключить тактирование ПЕРЕД конфигурацией!

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

Настройка тактовой частоты - теория

- После сброса частота системы берется от HSI = 16МГц
- После сброса вся периферия (GPIO в том числе), отключена от тактирования
- Аварийная система контроля HSE, позволяет в случае возникновения проблемы с HSE автоматически переключиться на HSI(сбросовое состояние)
- Существует возможность вывести тактовую частоту через выводы МК (МСО1 МСО2) -> до 100 Мгц
- Невозможно тактировать ядро и периферию низкочастными генераторами
- При использовании стандартной библиотеки STM32 тактовая частота настраиватся автоматически, перед выполнением основного кода, на максимальную частоту (168МГц) от HSE. Выполняется из функции SystemInit().

Настройка тактовой частоты - задача

- Расчитайте значение параметров M,N,P,Q и подставте их в функцию RCC_Config() (файл main.c). Требуемые частоты выделены красным.
- Закомментируйте строку 104 (/**/ или //) в startup_stm32f4xx.s отключите автоматическую конфигурацию функцией SystemInit()
- Разкомментируйте строку 110 в main.c (запустите фукнцию конфигурации тактирования RCC Config()

Настройка тактовой частоты - решение

- Расчитайте значение параметров M,N,P,Q и подставте их в функцию RCC_Config() (файл main.c). Требуемые частоты выделены красным.
- Закомментируйте строку 104 (/**/ или //) в startup_stm32f4xx.s отключите автоматическую конфигурацию функцией SystemInit()
- Разкомментируйте строку 110 в main.c (запустите фукнцию конфигурации тактирования RCC Config()

Схема тактирования – общий вид

Прерывания – теория

- <u>После сброса все прерывания от переверии запрещены</u>, таблица векторов прерываний расположена <u>в начале Flash памяти</u>.
- Прерывания должны быть:
 - Разрешены на периферии-> точный источник прерывания
 - Настроить NVIC (контроллер прерываний)-> приоритеты, расположение в памяти
 - Запрограммированы в stm32fxx_it.c-> тело процедуры
- Дополнительно внешние прерывания требуют:
 - Настройка приложенных линий как вход (GPIO module)
 - Указать режим **событие или прерывание** (EXTI module)
 - Выберите порт, подходящий источнику прерывания выбранного канала.(тоесть Канал1 может ссылаться на Pin1 любого порта) (SYSCFG module)
 - Разрешить канал внешного прерывания (EXTI module)
 - Выберите <u>синхронизацию</u> канала(по фронту или по спаду) (EXTI module)

EXTI module: form pin to NVIC Модуль внешних прерываний: от вывода до контроллера

прерываний

Настройка EXTI и NVIC

- **GPIO_InitTypeDef** -> выберите входной вывод и настройте в режиме входа.
- **GPIO_EXTILineConfig**-> настройте входной мультиплексор.
- EXTI_InitTypeDef:
 - **EXTI_Line->**EXTI_Line0..15
 - EXTI_Mode:
 - EXTI_Mode_Event (обращение к ядру без вызова прерывания)
 - EXTI_Mode_Interrupt
 - EXTI_Trigger:
 - EXTI_Trigger_Rising
 - EXTI_Trigger_Falling
 - EXTI_LineCmd:
 - ENABLE (переключиться на канал)
 - DISABLE
- NVIC_InitTypeDef:
 - NVIC_IRQChannel: PPP_IRQn *)
 - NVIC_IRQChannelPreemptionPriority:0..15 (ниже номер выше приоритет)
 - NVIC_IRQChannelSubPriority
 - NVIC_IRQChannelCmd -> ENABLE/DISABLE
 - *) PPP имя вектора прерывания определено в stm32f4xx.h

Прерывания - задача

Исправте функцию Button_Config(), чтобы заставить кнопку User работать:

- Настройте GPIOA, pin0 как вход (GPIO module)
- Настройте pin на работу с портом (периферия отключена) (SYSCFG module)
- Настройте режим (прерывания) и синхронизацию (по фронту) (EXTI module)
- Настройте вектор прерывания и его приоритетность (NVIC module)

Исправте функцию обработки прерывания EXTI0-IRQHandler() в stm32f4xx_it.c

• Очистить флаг прерывания

Прерывания - решения

Исправте функцию Button_Config(), чтобы заставить кнопку User работать:

Настройте GPIOA, pin0 как вход (GPIO module)

после сброса можно оставить без изменений

 Настройте pin на работу с портом (периферия отключена) (SYSCFG module) SYSCFG_EXTILineConfig(EXTI_PortSourseGPIOA, EXTI_PinSource0);

 Настройте режим (прерывания) и синхронизацию (по фронту) (EXTI module) *EXTI_InitStucture.EXTI_Line = EXTI_Line0; EXTI_InitStucture.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStucture.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStucture.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure);*

 Настройте вектор прерывания и его приоритетность (NVIC module) NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

Исправте функцию обработки прерывания EXTI0-IRQHandler() в stm32f4xx_it.c

• Очистить флаг прерывания

EXTI_ClearITPendingBit(EXTI_Line0);

Настройка Таймера - функции

• Запустить тактирование RCC module (APBx bus) используя функцию:

RCC_APBxPeriphClockCmd()

- Настроить модуль таймера используя TIM_TimerBaseInitTypeDef структуру в функции TIM_TimerBaseInit()
- Настроить TIM_OCInitTypeDef структуру и функцию TIM_OCxInit() для выбранных каналов таймера
- Инициализировать предзагрузку автозагружающего регистра (preload autoreload register) используя TIM_OCxPreloadConfig() и предзагрузку регистра захвата и сравнения TIM_ARRPreloadConfig() для каждого канала
- Включить таймер **TIM_Cmd()**

Настройка Таймера - структуры

- Для настройки канала ШИМ генератора нужно заполнить две структуры:
 - Настройка времени -> TIM_TimeBaseInitTypeDef
 - **TIM_Period –** автоматически перезагружается
 - F = TIM_counter_clk/(Period + 1)
 - **TIM_Prescaler** [0->2^16-1] значение предделителя таймера 3
 - TIM_ClockDivision используется для входного цифрового фильтра, можно оставить 0
 - 0

•

- **TIM_CounterMode –**TIM_CounterMode_[Up/Down/CenterAligned1..3]
 - TIM_Counter_Mode_Up
- Модуль захвата и сравнения для канала X -> TIM_OCInitTypeDef
 - TIM_OCMode различные выходные настройки модуля сравнения
 - TIM_OCMode_PWM1
 - **TIM_OutputState** входной режим:захват разрешен, выходной: выход разрешен
 - TIM_OutputState_Enable
 - TIM_Pulse [0->2^16-1] значение регистра захвата для канала Х
 - Duty_cycle = (TIM_Pulse/TIM_Period)*100%
 - TIM_OCPolarity выходной сигнал, высокий или низкий
 - TIM_OCPolarity_High

Таймер3 – Режим сравнения - задача

- Исправте TIM3_Config() в файле main.c для того чтобы настройть таймер3 на работу в режиме сравнения для генерации прерываний по переполнению с частотой 2Гц с выходом на канал1. Прерывания таймера3 контроллируют светодиоды LD3..6.
- Результат: в LED_Circle state в главном цикле светодиоды LD3..6 должны светить с частотой 1Гц и фазовым сдвигом (по кругу)

Таймер3 – Режим сравнения - решение

- Исправте TIM3_Config() в файле main.c для того чтобы настройть таймер3 на работу в режиме сравнения для генерации прерываний по переполнению с частотой 2Гц с выходом на канал1. Прерывания таймера3 контроллируют светодиоды LD3..6.
- Результат: в LED_Circle state в главном цикле светодиоды LD3..6 должны светить с частотой 1Гц и фазовым сдвигом (по кругу)

Настройка математического сопроцессора (FPU) в STM32 TrueStudio

- Чтобы использовать аппаратную поддержку вычислений с плавающей запятой: "Mix HW/SW implementation" в настройках проекта: Project->Properties->C/C++ Build->Settings->вкладка Tool Setting, во всех окнах: Assembler, С Compiler и C Linker.
- При выходе из режима отладки, программа продолжает работать. Перезагрузка МК вызовет перезагрузку программы
- На плате STM32F4_Discovery находиться встроенный отладчик STLink, работающий исключительно в режиме SWD.

FPU - задача

- Функция FPU_Test() внутри раздела LED_Blink, основного цикла
- Внутри функции реализовано 2 генератора случайных числе с плавающей точкой, а также основные арифметические операции
- Используя System Timer(SysTick) можно узнать сколько системных тактов необходимо для решения каждой операции:

	NOFPU	FPU
 time_add - сложение 		
 time_sub - вычитание 		
 time_mul - умножение 		
• time div - деление		

 Используя настройки Atollic STM32 TrueStudio, можно вкл/откл аппаратную поддержку операций с плавающей запятой -> пожалуйста, обратите внимание на предыдущий слайд

Задача: проверте сколько тактов занимает решение с вкл и откл математическим сопроцессором

FPU - решение

- Функция FPU_Test() внутри раздела LED_Blink, основного цикла
- Внутри функции реализовано 2 генератора случайных числе с плавающей точкой, а также основные арифметические операции
- Используя System Timer(SysTick) можно узнать сколько системных тактов необходимо для решения каждой операции:

		No FPU	FPU
•	time_add - сложение	160	19
•	time_sub - вычитание	165	19
•	time_mul - умножение	120	19
•	time_div - деление	247	30

 Используя настройки Atollic STM32 TrueStudio, можно вкл/откл аппаратную поддержку операций с плавающей запятой -> пожалуйста, обратите внимание на предыдущий слайд

Точная настройка приложения - задача

- Подпрограмма MEMS_Mouse работает в режиме "реверсивная ориентация", как в самолете(рисунок А)
- Задача заключается в изменении ориентации как показано на рисунке В. Ответ на этот вопрос находится в stm32f4xx_it.c, смотри строки 330..360.

Дополнительная информация

STM32F4xx are here http://www.emcu.it/STM32F4xx/STM32F4xx.html STM32 motor control is here http://www.emcu.it/STM32/STM32-MotorControl/STM32-MotorControl.html TM32W is here http://www.emcu.it/STM32/STM32Wxx/STM32Wxx.html http://www.emcu.it/SPEAr/SPEAr.html ST-Link-v2 is http://www.emcu.it/ST-LINKv2/ST-LINKv2.html M24LRxx memory + RFID is here http://www.emcu.it/MEMeRFID/MemAndRFID.html Power Line Module is here http://www.emcu.it/PLM/PLM.html FMS is http://www.emcu.it/MEMS/MEMS.html ATOLLIC tips and tricks are here

http://www.emcu.it/ARM_Compiler/ATOLLIC/ATOLLIC_tips_and_tricks.html

WWW.EMCU.IT

In general information concerning STM32xx, STM8xx, MEMS, RFID, SMART Meter, ZigBee, Blue Tooth, etc are <u>here</u>

www.emcu.it