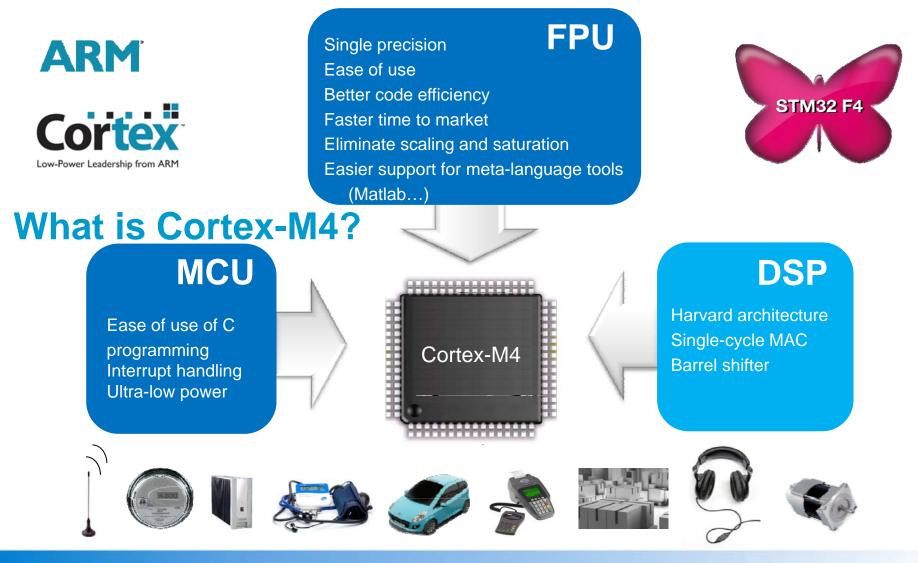


High-performance Cortex[™]-M4 MCU



The STM32 F4 series brings to the market the world's highest performance Cortex[™]-M microcontrollers 168 MHz F_{CPU}/210 DMIPS 363 Coremark score

The STM32 F4 series extends the STM32 portfolio 250+ compatible devices already in production, including the F1 series, F2 series and ultra-low-power L1 series

The STM32 F4 series reinforces ST's current leadership in Cortex-M microcontrollers, with 45% world market share by units in (2010 or cumulated 2007 to Q1/11) according to ARM reporting

STM32 F4 series High-performance digital signal controller

- ST is introducing STM32 products based on Cortex M4 core. Over 30 new part numbers pin-to-pin and software compatible with existing <u>STM32 F2 Series.</u>
- The new DSP and FPU instructions combined to 168Mhz performance open the door to a new level of Digital Signal Controller applications and faster development time.
- STM32 Releasing your creativity

Advanced technology and process from ST:

- Memory accelerator: ART Accelerator™
- Multi AHB Bus Matrix
- 90nm process

Outstanding results:

- 210DMIPS at 168Mhz.
- Execution from Flash equivalent to 0-wait state performance up to 168Mhz thanks to ST ART Accelerator

More Memory

- Up to 1MB Flash,
- 192kB SRAM: 128kB on bus matrix + 64kB on data bus dedicated to the CPU usage

Advanced peripherals shared with STM32 F2 Series

- USB OTG High speed 480Mbit/s
- Ethernet MAC 10/100 with IEEE1588
- PWM High speed timers: Now 168Mhz max frequency!
- Crypo/hash processor, 32-bit random number generator (RNG)
- 32-bit RTC with calendar: Now with sub 1 second accuracy, and <1uA typ!

STM32 F4 Series highlights 4/4

Further improvements

- Low voltage: 1.8V to 3.6V VDD, down to 1.7*V on most packages
- Full duplex I2S peripherals
- 12-bit ADC: 0.41µs conversion/2.4Msps (7.2Msps in interleaved mode)
- High speed USART up to 10.5Mbits/s
- High speed SPI up to 37.5Mbits/s
- Camera interface up to 54MBytes/s

*external reset circuitry required to support 1.7V

STM32 F4 series – applications served

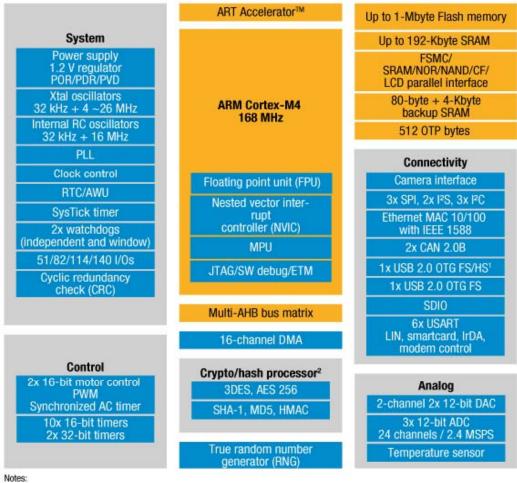
- Points of sale/inventory -**Building** management
- Industrial automation and solar panels
- Security/fire/HVAC

Test and measurement

- **Transportation**

Medical

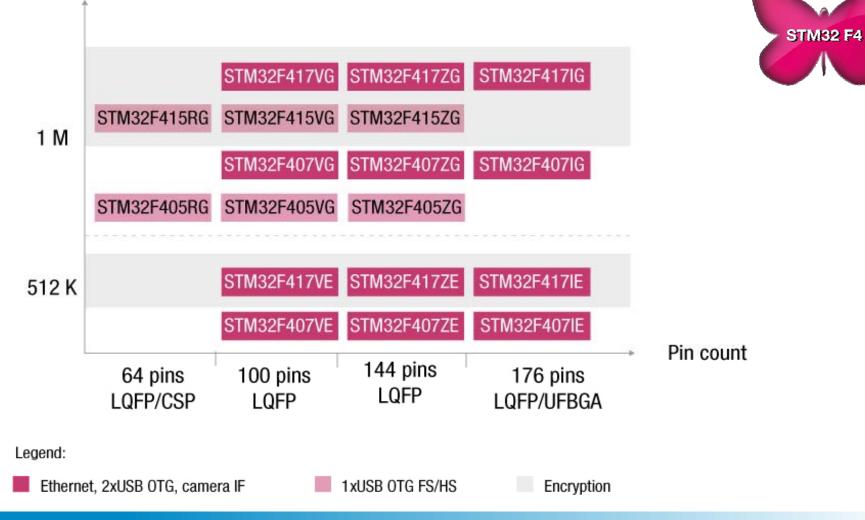
Communication



STM32 F4 block diagram

Feature highlight

- 168 MHz Cortex-M4 CPU
 - Floating point unit (FPU)
 - ART Accelerator TM
 - Multi-level AHB bus matrix
- 1-Mbyte Flash, 192-Kbyte SRAM
- 1.7 to 3.6 V supply
- RTC: <1 µA typ, sub second accuracy
- 2x full duplex I²S
- 3x 12-bit ADC
 0.41 µs/2.4 MSPS
- 168 MHz timers



- 1. HS requires an external PHY connected to the ULPI interface
- 2. Crypto/hash processor on STM32F417 and STM32F415

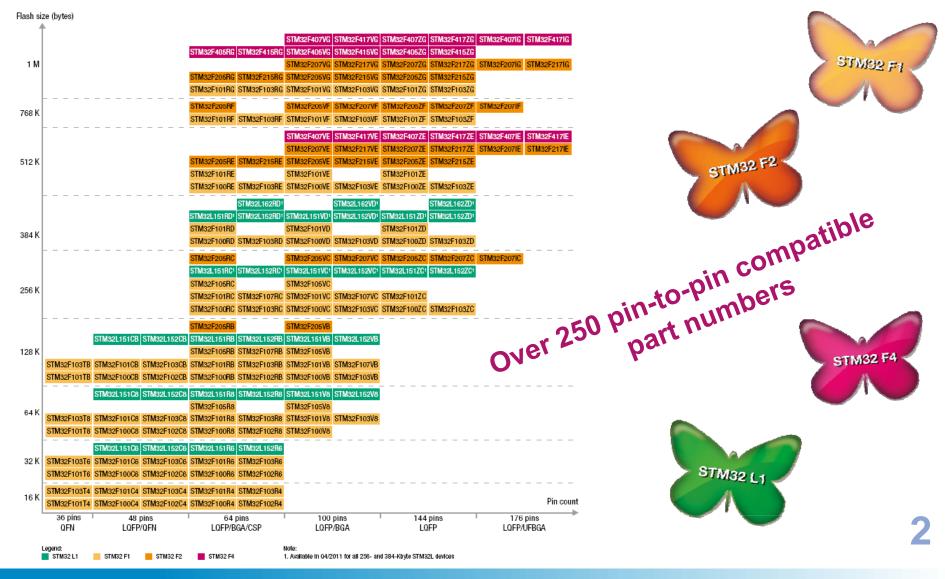
Flash size (bytes)

STM32 product series

4 product series

Common core peripherals and architecture:

Communication peripherals: USART, SPI, I ² C		Cortex-M4 with DSP and FPU	1
Multiple general-purpose timers		STM32 F2 s	eri
Integrated reset and brown-out warning		120 MHz Cortex-M3 CPU	1
Multiple DMA		STM32 F1 s	er
2x watchdogs Real-time clock		72 MHz Cortex-M3	(
Integrated regulator PLL and clock circuit		CPU STM32 F1 s	er
External memory interface (FSMC)		72 MHz	
Dual 12-bit DAC		Cortex-M3 CPU	ç
Up to 3x 12-bit ADC (up to 0.41 µs)		STM32 F1 s	er
Main oscillator and 32 kHz oscillator		48 MHz	
Low-speed and high-speed internal RC oscillators	+	Cortex-M3 CPU	
-40 to +85 °C and up to 105 °C		STM32 F1 s	er
operating temperature range		36 MHz	
Low voltage 2.0 to 3.6 V or 1.65/1.7 to 3.6 V (depending on series)		Cortex-M3 CPU	8
5.0 V tolerant I/0s		STM32 F1 s	er
Temperature sensor		24 MHz Cortex-M3 CPU	


STM32 F4 series - High performance with DSP (STM32F405/415/407/417)

	168 MHz Cortex-M4 with DSP and FPU	Up to 192-Kbyte SRAM	Up to 1-Mbyte Flash	2x USB 2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	SDIO 2x I²S audio Camera IF	Ethernet IEEE 1588	Crypto/hash processor and RNG	STM32 F1
	STM32 F2 s	eries - High	performance	(STM32F20	5/215/207/217	1				
	120 MHz Cortex-M3 CPU	Up to 128-Kbyte SRAM	Up to 1-Mbyte Flash	2x USB 2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	SDIO 2x I ² S audio Camera IF	Ethernet IEEE 1588	Crypto/hash processor and RNG	STMS2 F2
	STM32 F1 s	eries - Conn	ectivity line (STM32F105	/107)					
	72 MHz Cortex-M3 CPU	Up to 64-Kbyte SRAM	Up to 256-Kbyte Flash	USB 2.0 OTG FS	3-phase MC timer	2x CAN 2.0B	2x I²S audio	Ethernet IEEE 1588		
	STM32 F1 s	eries - Perfo	rmance line	(STM32F103	3)					
	72 MHz Cortex-M3 CPU	Up to 96-Kbyte SRAM	Up to 1-Mbyte Flash	USB FS device	3-phase MC timer	CAN 2.0B	SDI0 2x I²S			
	STM32 F1 s	eries - USB /	Access line (STM32F102))					
+	48 MHz Cortex-M3 CPU	Up to 16-Kbyte SRAM	Up to 128-Kbyte Flash	USB FS device						STM52 FI
	STM32 F1 s	eries - Acces	ss line (STM3	32F101)						
	36 MHz Cortex-M3 CPU	Up to 80-Kbyte SRAM	Up to 1-Mbyte Flash							
	STM32 F1 s	eries - Value	line (STM32	F100)						
	24 MHz Cortex-M3 CPU	Up to 32-Kbyte SRAM	Up to 512-Kbyte Flash	3-phase MC timer	CEC					
	STM32 L1 s	eries - Ultra-	low-power (STM32F151	/152)					
	32 MHz Cortex-M3 CPU	Up to 48-Kbyte SRAM	Up to 384-Kbyte Flash	USB FS device	Data EEPROM up to 12 Kbytes	LCD 8x40 4x44	Comparator	BOR MSI VScal	AES 128-bit	STM32 L1

STM32 – leading Cortex-M portfolio

The cheapest and quickest way to discover the STM32F4

- Everything included for a quick start with the STM32F4 serie
 - Price: \$ 14.90 (RRP)
 - DCPL : \$ 11.90
 - Order code: STM32F4DISCOVERY
 - Available in ST stock from October 2011
- In circuit ST-LINK/V2 debugger / programmer included to debug Discovery kit applications or other target board applications.
- Dedicated web site <u>www.st.com/stm32F4discovery</u>
 - Large number of examples ready to run
 - Schematics
 - Forums and more

STM32F4 Discovery Board

- On-board ST-LINK/V2 with selection mode switch to use the kit as stand-alone ST-LINK with SWD connector
- Designed to be powered by USB or by external power 5V or 3.3V supply
- Can supply target application with 5 Volts or 3 Volts
- Two User LEDs (Green and Blue)
- Audio codec
- Mems Micro (MP45DT02)
- One user Push Button
- Extension header for all QFP64 I/Os for quick connection to prototyping board or easy probing
- ST-LINK/V2 SWD connector STM32F407VGT6 User button-Audio Jack

September : STM32F4 eval board

- Eval board : STM3240G-EVAL : 21st of September
 - For any needs before contact your local ST support
 - DCPL : \$279
 - RRP: \$349

Sample : 21st of September

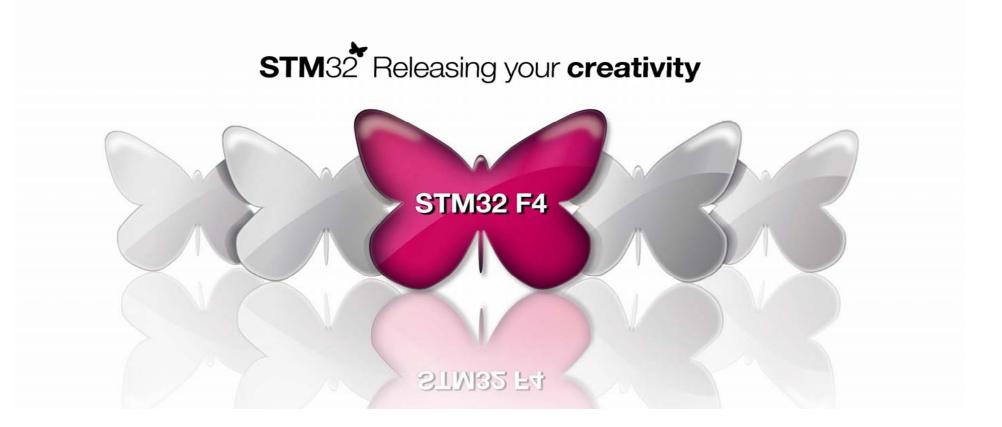
LQFP100	STM32F407VGT6
LQFP144	STM32F457ZGT6
LQFP176	STM32F457IGT6
BGA176	STM32F457IGH6
LQFP64	STM32F455RGT6

Full production November 2011

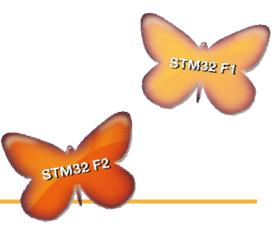
2011

Key messages to remember

- STM32 F4 series
 - World's highest performance
 - Extends the STM32 portfolio to over 250+ compatible devices
 - One-in-two Cortex-M MCUs shipped worldwide is an STM32

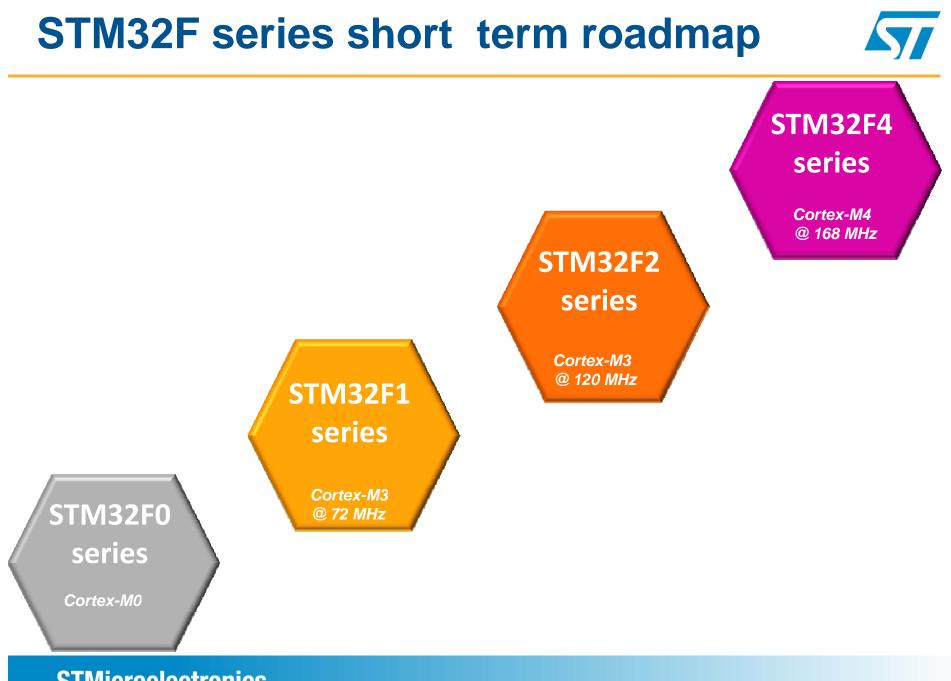

Discovery kits available now

STM32F4DISCOVERY

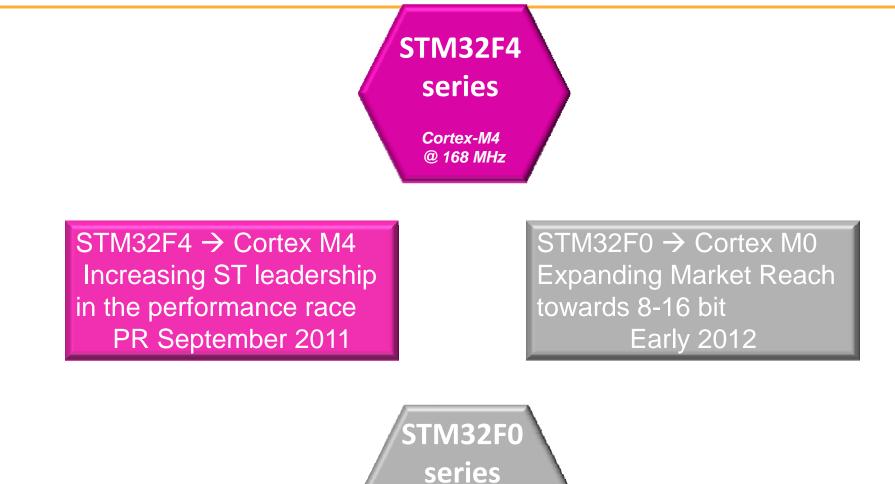




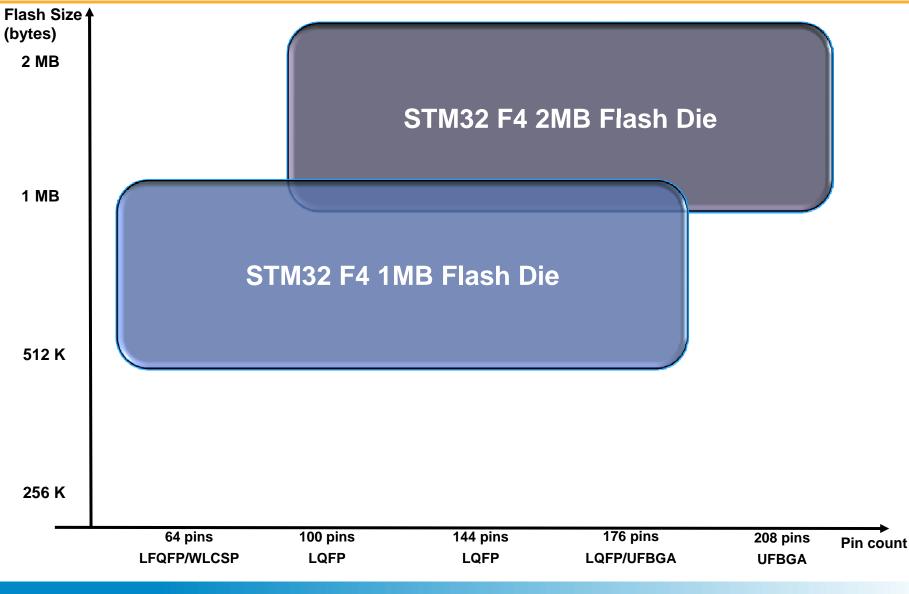
www.st.com/stm32f4



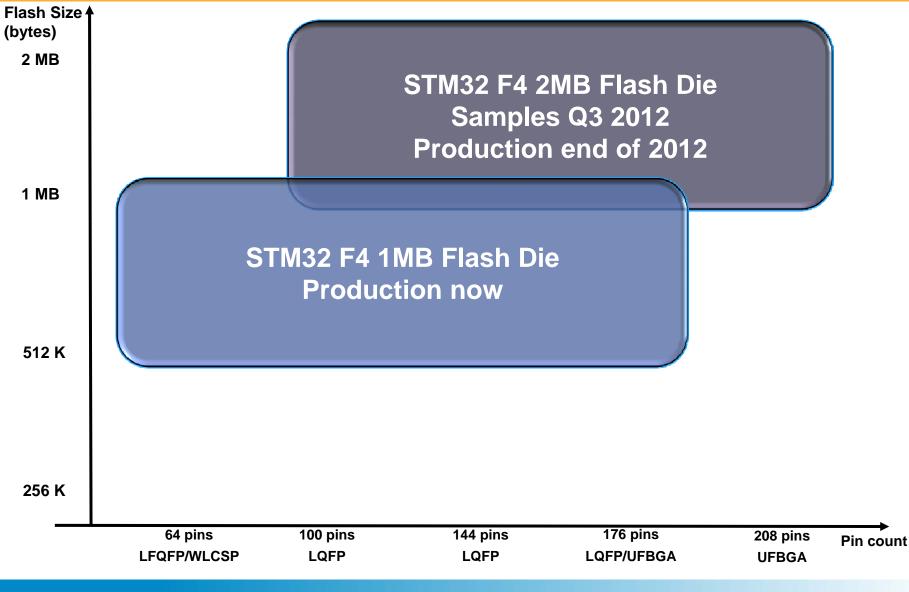
STM32F roadmap



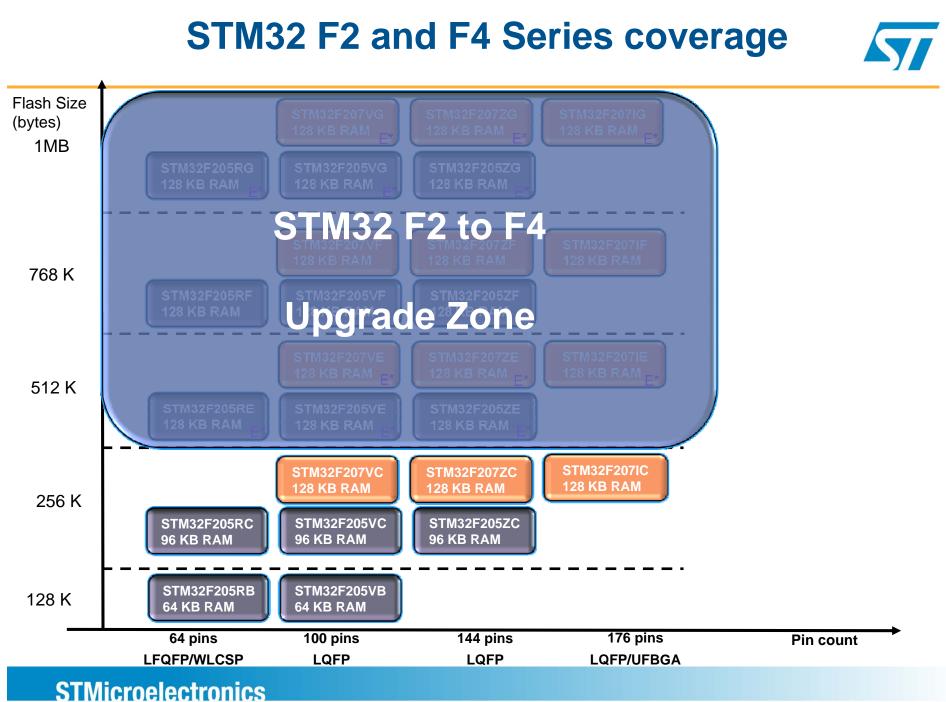
STM32 Next 2 Major Launch



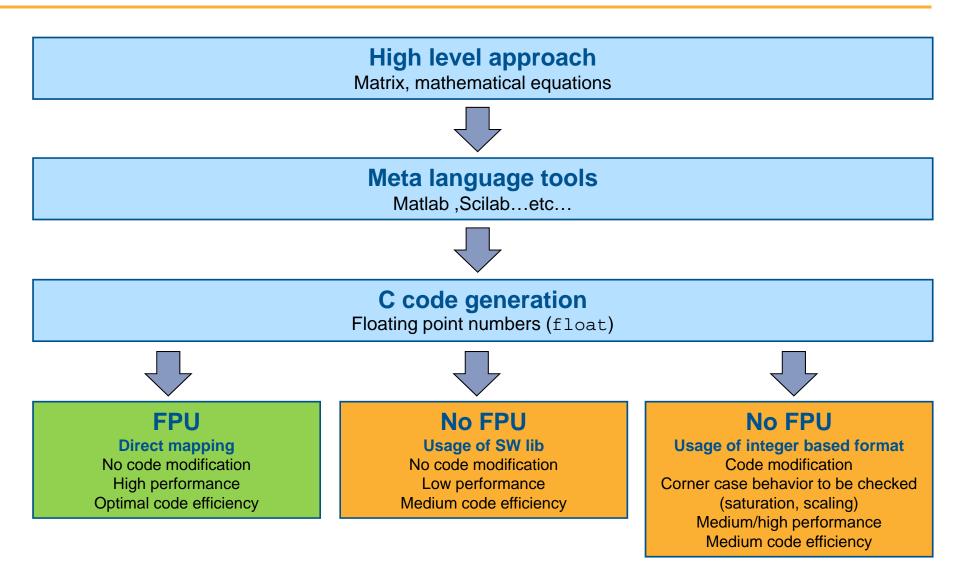
Cortex-M0


STM32 F4 Roadmap

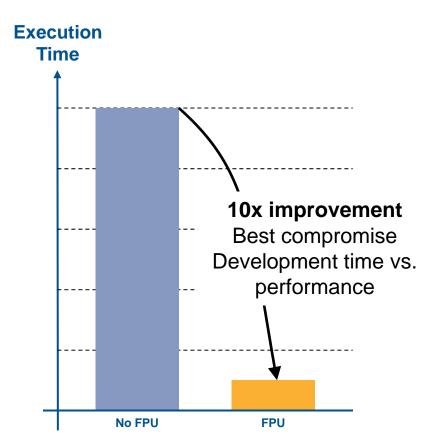
STM32 F4 Roadmap



Backup Slides

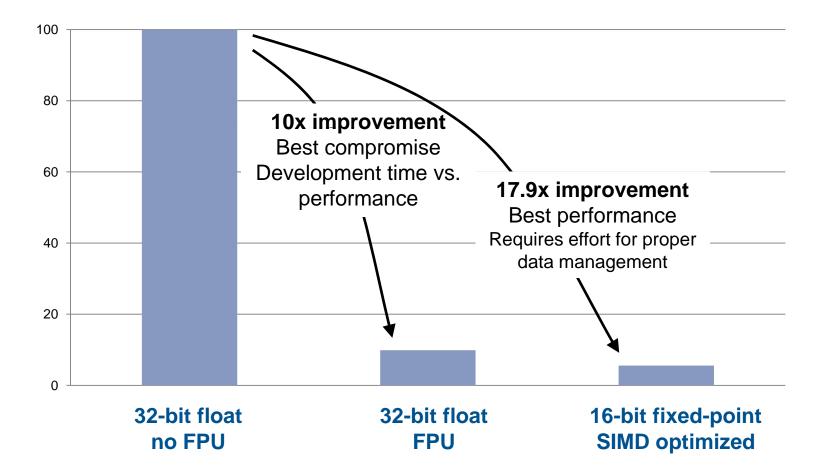

- STM32F4 starter kits from IAR and Keil available in Q4 2011
- Order codes:
 - IAR: STM3240G-SK/IAR
 - KEIL: STM3240G-SK/KEI

FPU benefits and performance


FPU benefits in real life applications

 Time execution comparison for a 29 coefficient FIR on float 32 with and without FPU (CMSIS library)

DSP benefits and performance


Single-cycle multiply-accumulate (MAC)

- The multiplier unit allows any MUL or MAC instructions to be executed in a single cycle
 - Signed/Unsigned Multiply
 - Signed/Unsigned Multiply-Accumulate
 - Signed/Unsigned Multiply-Accumulate Long (64-bit)
- Benefits : Speed improvement vs. Cortex-M3
 - 4x for 16-bit MAC (dual 16-bit MAC)
 - 2x for 32-bit MAC
 - up to 7x for 64-bit MAC

• **FIR filter** execution time (CMSIS library)

ARM Cortex M4 in few words

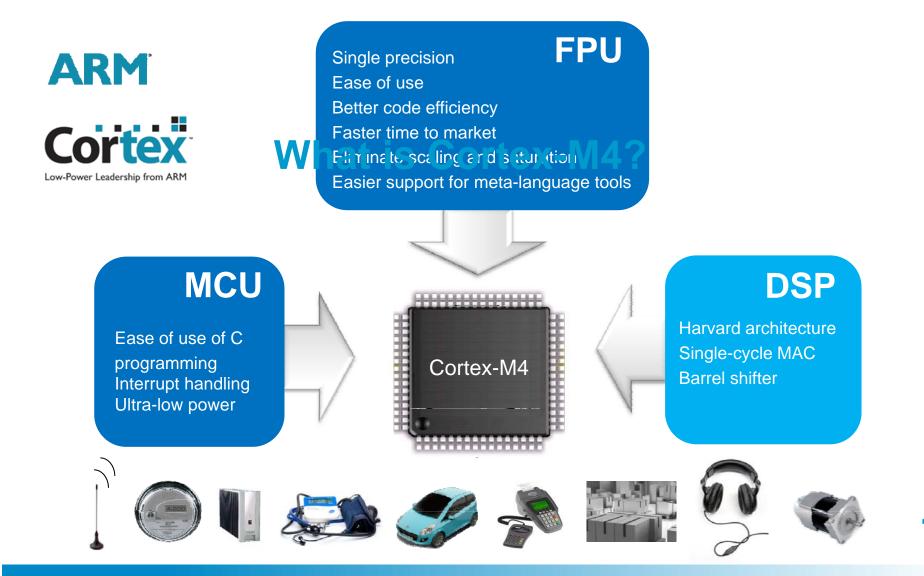
Cortex-M processors

- Forget traditional 8/16/32-bit classifications
 - Seamless architecture across all applications
 - Every product optimised for ultra low power and ease of use

Cortex-M0	Cortex-M3	Cortex-M4
"8/16-bit" applications	"16/32-bit" applications	"32-bit/DSC" applications

Binary and tool compatible

Cortex-M processors binary compatible


РКН	QADD	QADD16 QADD8	GASX	QDADD	QDSUB	QSAX	QSUB
QSUB16	QSUB8	SADD16 SADD8	SASX	SEL	SHADD16	SHADD8	SHASX
SHSAX	SHSUB16	SHSUB8 SMLAB	B SMLABT	SMLATB	SMLATT	SMLAD	SMLALBB
						SMLALBT	SMLALTB
ADC	ADD	ADR AND	ASR	В	CLZ	SMLALTT	SMLALD
BFC	BFI	BIC CDP	CLREX	CBNZ CBZ	CMN	SMLAWB	SMLAWT
СМР			DBG	EOR	LDC	SMLSD	SMLSLD
LDMIA	BKPT BLX	ADC ADD ADR	LDMDB	LDR	LDRB	SMMLA	SMMLS
LDRBT	BX CPS	AND ASR B	LDRD	LDREX	LDREXB	SMMUL	SMUAD
LDREXH	DMB	BL BIC	LDRH	LDRHT	LDRSB	SMULBB	SMULBT
LDRSBT	DSB	CMN CMP EOR	LDRSHT	LDRSH	LDRT	SMULTB	SMULTT
MCR	ISB	LDR LDRB LDM	LSL	LSR	MLS	SMULWB	SMULWT
MCRR	MRS	LDRH LDRSB (LDRSH)	MLA	MOV	MOVT	SMUSD	SSAT16
MRC	MSR	LSL LSR MOV	MRRC	MUL	MVN	SSAX	SSUB16
NOP	NOP REV	MUL MVN ORR	ORN	ORR	PLD	SSUB8	SXTAB
PLDW	REV16 REVSH	POP (PUSH) (ROR	PLI	РОР	PUSH	SXTAB16	SXTAH
RBIT	SEV SXTB	RSB SBC STM	REV	REV16	REVSH	SXTB16	UADD16
ROR	SXTH UXTB	STR STRB STRH	RRX	RSB	SBC	UADD8	UASX
SBFX	UXTH WFE	SUB SVC TST	SDIV	SEV	SMLAL	UHADD16	UHADD8
SMULL	WFI YIELD	CORTEX-M0/M1	SSAT	STC	STMIA	UHASX	UHSAX
STMDB				STRB	STRBT	UHSUB16	UHSUB8
STRD	STREX	STREXB STREXH	STRH	STRHT	STRT	UMAAL	UQADD16
SUB	SXTB	SXTH TBB	ТВН	TEQ	TST	UQADD8	UQASX
UBFX		UMLAL UMULL	USAT	UXTB	UXTH	UQSAX	UQSUB16
WFE	WFI	YIELD IT		C	ORTEX-M3	UQSUB8	USAD8
						USADA8	USAT16
USAX	USUB16	USUB8 UXTAB	UXTAB16	UXTAH	UXTB16		Cortex-M4
L							
VABS	VADD						VLDR
VMLA	VMLS		VMSR		VNEG		VNMLS
VNMUL	VPOP	VPUSH VSQRT)	Cortex-M4F

STMicroelectronics

Low-Power Leadership from ARM

ARM Cortex M4 Core

Cortex-M feature set comparison

	Cortex-M0	Cortex-M3	Cortex-M4
Architecture Version	V6M	v7M	v7ME
Instruction set architecture	Thumb, Thumb-2 System Instructions	Thumb + Thumb-2	Thumb + Thumb-2, DSP, SIMD, FP
DMIPS/MHz	0.9	1.25	1.25
Bus interfaces	1	3	3
Integrated NVIC	Yes	Yes	Yes
Number interrupts	1-32 + NMI	1-240 + NMI	1-240 + NMI
Interrupt priorities	4	8-256	8-256
Breakpoints, Watchpoints	4/2/0, 2/1/0	8/4/0, 2/1/0	8/4/0, 2/1/0
Memory Protection Unit (MPU)	No	Yes (Option)	Yes (Option)
Integrated trace option (ETM)	No	Yes (Option)	Yes (Option)
Fault Robust Interface	No	Yes (Option)	No
Single Cycle Multiply	Yes (Option)	Yes	Yes
Hardware Divide	No	Yes	Yes
WIC Support	Yes	Yes	Yes
Bit banding support	No	Yes	Yes
Single cycle DSP/SIMD	No	No	Yes
Floating point hardware	No	No	Yes
Bus protocol	AHB Lite	AHB Lite, APB	AHB Lite, APB
CMSIS Support	Yes	Yes	Yes

Low-Power Leadership from 36RM

DSP lib provided for free by ARM

- The benefits of software libraries for Cortex-M4
 - Enables end user to develop applications faster
 - Keeps end user abstracted from low level programming
 - Benchmarking vehicle during system development
 - Clear competitive positioning against incumbent DSP/DSC offerings
 - Accelerate third party software development
- Keeping it easy to access for end user
 - Minimal entry barrier very easy to access and use
- One standard library no duplicated efforts
 - ARM channels effort/resources with software partner
 - Value add through another level of software eg: filter config tools

DSP lib function list snapshot

- Basic math vector mathematics
- Fast math sin, cos, sqrt etc
- Interpolation linear, bilinear
- Complex math
- Statistics max, min, RMS etc
- Filtering IIR, FIR, LMS etc
- Transforms FFT(real and complex), Cosine transform etc
- Matrix functions
- PID Controller
- Support functions copy/fill arrays, data type conversions etc

STM32 F4 vs. STM32 F2

STMicroelectronics

Differences in Core and System Architecture

	STM32 F2	STM32 F4
Core	ARM Cortex M3 (r2p0)	ARM Cortex M4F * (r0p1)
Floating point calculation	s/w	Single precision h/w
Performance / with ART ON	"0ws like" performance thanks to ART Accelerator: 120MHz:1.65V-3.6V	"Ows like" performance thanks to ART Accelerator: 168Mhz: 2.1V–3.6V 144MHz:1.8V–2.1V 128MHz:1.7V–1.8V
SRAM internal capacity	128KB of system memory	192KB (128KB system memory + 64KB dedicated to CPU data)

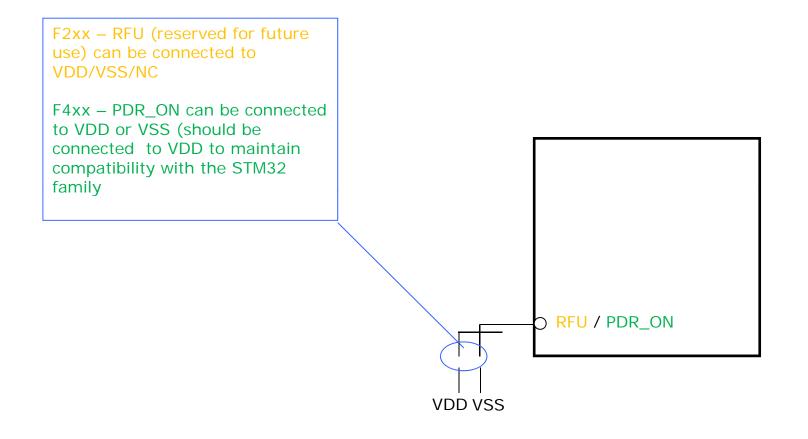
Differences in Core and System Architecture

	STM32 F2	STM32 F4
Internal Regulator Bypass	Available only on WLCSP64 (IRR_OFF pin) and BGA176 (BYPASS_REG pin) packages	Available only on WLCSP64 and BGA176 (BYPASS_REG pin) packages
	On WLCSP64 this functionality can not be dissociated from BOR OFF	BOR OFF and Internal regulator bypass are non exclusive on the above packages
VDD min extension from 1.8V down to 1.65V (requires BOR OFF) on F2	Available only on WLCSP64 package (IRR_OFF pin)	Available on all packages (PDR_ON pin) except on LQFP64 pin package
1.7V (requires BOR OFF) on F4	This functionality can not be dissociated from Regulator bypass	This functionality can be dissociated from Regulator bypass
Voltage Scaling (Internal regulator output)	None	Performance Optimization (150 MHz max) Power Optimization (120MHz max)

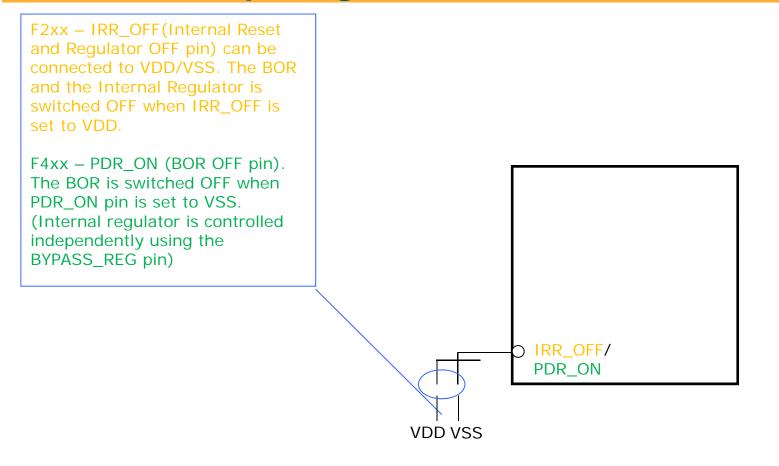
Differences in Peripheral System Architecture

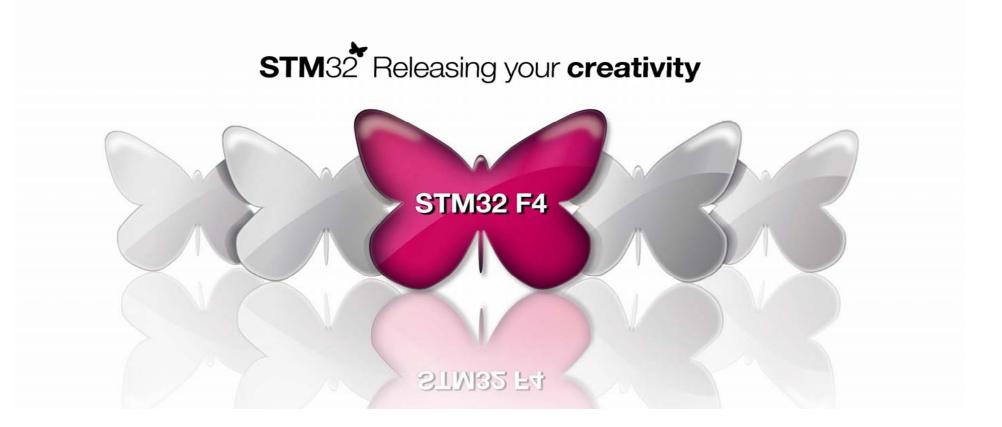
	STM32 F2	STM32 F4
FSMC (improvements)	Remap capability on bank1-NE1/NE2, but no capability to access other banks while remapped	Remap capability on bank1-NE1/NE2, with access to other FSMC banks while remapped.
I2S	2x I2S Half duplex	2x I2S Full duplex.

New RTC implementation


	STM32 F2	STM32 F4
Calendar Sub seconds access	NO	YES (resolution down to RTC clock)
Calendar resolution	From RTCCLK/2 to RTCCLK/2^20	From RTCCLK/1 to RTCCLK/2^22
Calendar read and synchronization on the fly	NO	YES
Alarm on calendar	2 alarms Sec, Min, Hour, Date/day	2 alarms Sec, Min, Hour, Date/day, Sub seconds

	STM32 F2	STM32 F4
Calendar Calibration	Calib window : 64min Calibration step: Negative:-2ppm Positive: +4ppm Range [-63ppm+126ppm]	Calib window : 8s/16s/32s Calibration step: Negative or Positive: 3.81ppm/1.91ppm/ 0.95 ppm
		Range [-480ppm +480ppm]
Timestamp	YES Sec, Min, Hour, Date	YES Sec, Min, Hour, Date, Sub seconds
Tamper	YES (2 pins /1 event) Edge Detection only	YES (2 pins/ 2 events) Level Detection with Configurable filtering


Compatible board design for LQFP100-144-176 and BGA 176 packages


Compatible board design for WLCSP64+2 package

www.st.com/stm32f4

STMicroelectronics

Glossary

- ART Accelerator [™] : ST's adaptive real-time accelerator
- CMSIS: Cortex[™] microcontroller software interface standard
- MCU: microcontroller unit
- DSC: digital signal controller
- DSP: digital signal processor
- FPU: floating point unit
- RTC: real-time clock
- MPU: memory protection unit
- FSMC: flexible static memory controller