
Volume 1, Issue 2

In this Issue:
〉〉 Bringing 32-bit Performance to 8- and 16-bit Applications

〉〉 Developing High-Quality Audio for Consumer Electronics Applications

〉〉 Bringing Floating-Point Performance and Precision to Embedded Applications

〉〉 Achieving Ultra-Low-Power Efficiency for Portable Medical Devices

〉〉 Accelerating Time-to-Market Through the ARM Cortex-M Ecosystem

〉〉 Introducing a Graphical User Interface to Your Embedded Application

STM32 Journal

2

STM32 Journal

When I got my first paycheck as
an engineer nearly three decades
ago, coding and layout weren’t
exactly social activities. While
there was a certain amount of
team collaboration to decide what
I would work on, the majority of
what I did was by myself. When I
decided to shed the ten pounds
I had gained as a freshman, it
was a similar story. I never found
someone willing to go consistently
to the gym with me, so I pressed
those weights alone as well.
It’s quite a different world
today. Take at look at the Nike+
FuelBand on the cover of this
issue’s STM32 Journal. Worn on
your wrist, it records your every
activity, not just when you’re on
the treadmill.
What makes the FuelBand such
a ground-breaking product is
how it brings people together.
It doesn’t matter whether you
work out at 2am or are in a
strange city on travel, with
this next-generation exercise
monitor, you are never alone.
Connected to your phone via
Bluetooth, you can be in touch

with exercise buddies all around
the world through the Nike+
online community.
The Nike+ FuelBand is quite
a feat of engineering. To
differentiate between simple
gestures and active motions
requires complex signal
processing capabilities. The
device must also be constantly
on since even you don’t know
when you might jump into action.
120 LEDs comprise the display
and “Fuel” indicator, and the
device can operate for up to four
full days without recharging. It
also weighs less than one ounce,
including the batteries. Now
that’s an efficient design.
At the heart of the FuelBand is
ST’s ultra-low power STM32 L1
microcontroller. In addition to
providing the 32-bit performance
and processing capacity required
for advanced signal processing,
the STM32 architecture offers the
real-time responsiveness, power
efficiency, and highly integrated
peripherals and memory required
for even the most demanding
embedded applications.

With innovations like FuelBand
and Nike+ technology, Nike has
leveraged social networking to
change the way we live together.
Exercise, as a result, is no longer
a solo endeavor.
Neither, it turns out, is
engineering. The network
supporting the STM32
architecture enables a whole new
level of collaboration. Design
tools from companies like Keil,
IAR Systems, and Micriµm are
like having a team of experts
sitting right next you. Need
to extend a design by adding
audio or a capacitive touch GUI-
based interface? Just call upon
partners like DSP Concepts and
GeeseWare. And with the STM32
architecture based on the ARM
Cortex-M0, M3, and M4 cores,
you have access to a global
ecosystem second to none.
You can even ask questions of
your fellow engineers at 2am
or share your own hard-won
experience through forums,
blogs, and tweets.
It truly is a different world we live,
play, exercise, and work in.

Table of Contents
Editorial

Bringing 32-bit
Performance to 8- and
16-bit Applications

Developing High-
Quality Audio for
Consumer Electronics
Applications

Bringing Floating-
Point Performance and
Precision to Embedded
Applications

Achieving Ultra-Low-
Power Efficiency for
Portable Medical
Devices

Accelerating Time-
to-Market Through
the ARM Cortex-M
Ecosystem

Introducing a Graphical
User Interface to Your
Embedded Application

2

3

11

19

26

34

42

We Are Not Alone
By Nicholas Cravotta, Technical Editor

STM32 Journal
Volume 2, Issue 2

3

STM32 Journal

Bringing 32-bit Performance
to 8- and 16-bit Applications

Today’s embedded applications
are being called upon to
provide an increasing number
of capabilities. More and more
devices need to be connected,
require greater precision, must
offer a graphics-based interface
with touch capabilities, utilize
sophisticated signal processing,
and support multimedia playback.
In the past, developers were
compelled by cost constraints
to base their designs on 8- and
16-bit architectures that limited
performance. Now, with the
availability of next-generation
MCUs like the STM32 F0 that
provide 32-bit performance
at 8-bit budget pricing, OEMs
can bring substantial value to
end-users without having to
compromise functionality. In
addition, powerful development
tools like Keil’s MDK-ARM and
IAR Embedded Workbench
enable developers new to 32-
bit programming to immediately

exploit the full capabilities of the
STM32 F0 architecture.

The 32-bit Advantage
There are several ways in which
the STM32 F0 lowers product
cost compared to 8- and 16-bit-
based designs. Specifically,
because these MCUs tend to be
based on legacy architectures,
they have many limitations that
slow development by forcing
designers to work around the
architecture, so to speak. For
example, to complete a 16 x 16
multiplication for a processing
algorithm, a 16-bit CPU requires
four multiplies and several
additions, depending upon the
implementation. An 8-bit CPU
would require significantly more
cycles. With the STM32 F0, this
takes a single instruction.
The result is code that makes
better utilization of MCU
resources, leading to faster
operation, more performance per

MHz, higher code density, and
greater power efficiency. Since
each instruction does more per
clock cycle, applications can be
written using less code. In addition
to accelerating development,
shorter code is easier to debug as
well. Together, all of these benefits
lead to lower system cost.
Cost, however, is only one of
the numerous advantages the
STM32 F0 has over 8- and 16-
bit architectures. The STM32
F0 is a full embedded MCU
built using the same STM32
DNA that the rest of the STM32
family has, including excellent
real-time performance, DMA,
high-resolution ADC and DAC
peripherals, motor control
timers, and connectivity
interfaces. These integrated
capabilities bring tremendous
efficiency to cost-sensitive
designs in a way that limited
8- and 16-bit MCU architectures
cannot (see Figure 1).

For example, the availability of
a 32-bit bus not only speeds
data transfers and increases
computing performance, it
improves system reliability.
Consider the challenge of reading
a 12-bit DAC using an 8-bit bus
where the CPU has to read the
DAC twice to capture the entire
sample. If an interrupt occurs
between these reads, the DAC
data may be overwritten by the
next sample before the interrupt
is completed and the second
read can be executed. To prevent
this, developers have to manually
disable interrupts for every
such “atomic” operation in an
application. If even one instance
is missed, this creates a potential
for an intermittent error that will
be extremely difficult to resolve.

DMA: Moving Data
Efficiently
The STM32 F0 is a modern
architecture integrating the

By Reinhard Keil, Director of MCU Tools, ARM Germany GmbH
Shawn Prestridge, Senior Field Applications Engineer, IAR Systems
Sean Newton, Field Applications Engineering Manager, STMicroelectronics

4

STM32 Journal

latest in processing, power,
and debugging technology. For
example, multiple low power
modes extend greater control
over power consumption to
achieve longer operating life for
battery-operated and portable
devices. In addition, the STM32
F0 offers advanced features,
including full Direct Memory
Access (DMA) and the ability to
shut down the ADC between
samples to further increase
performance while lowering
power consumption.

In general, 8-bit MCUs don’t
have the powerful peripherals
that higher performance MCUs
tend to have. For example,
DMA has become an essential
peripheral for applications that
need to move a great deal
of data, whether as part of a
processing algorithm, receiving
data from an interface, playing
back audio, or transferring
graphics to the display. In a
traditional 8-bit architecture,
each word of data has to be
moved by the CPU. In addition,

pointers need to be updated
and a loop managed. Thus,
every 8-bits of data takes
several cycles of CPU time
to move.
With the DMA in the STM32
F0, an entire block of data can
be moved without involving
the CPU. After the program
configures the transfer, the
DMA manages moving the data
in the background. In fact, the
CPU can drop into a low power
sleep mode while it waits for
the transfer to complete. As

a result, data transfers do not
consume unnecessary CPU
cycles and require less power to
complete than for 8- and 16-bit
architectures.
The availability of a DMA
controller can also greatly
simplify and accelerate product
development. Consider reading
data off of a high-speed data
interface such as I2C. Because
of the load on the CPU, 8-bit
developers have to work around
the MCU’s architecture, using
many interrupts to utilize the time
between data reads. With the
STM32 F0, the CPU operates
independently of the interface,
allowing developers to program
the CPU for other tasks without
having to worry about missing an
interrupt or losing data.
Because the STM32 architecture
uses an internal bus matrix, the
DMA can be used in conjunction
with each of the different on-
chip memories as well as many
of the peripherals. For example,
the DMA can be configured to
sample the ADC regularly over
a period of time: a timer triggers
the DMA to read the ADC and
store the result in memory
without involving the CPU.
Once the operation is complete,
the ADC shuts down until the

Figure 1 The STM32 F0 is a full embedded MCU built using the same STM32 DNA that the rest of the STM32 family has and offers
tremendous efficiency to cost-sensitive designs in a way that limited 8- and 16-bit MCU architectures cannot.

Real-Time
performance

Power
efficiency

Superior and
innovative
peripherals

Maximum
integration

Extensive tools
and software

48 MHz/38 DMIPS,
5 channels DMA

mapped on 11 IPs +
Bus Matrix allows Flash

execution in parallel
with DMA transfer

5 µA in Stop mode
2 µA in standby mode
0.4 µA Vbat with RTC,

1.8 V or 2...3.6 V supply,
Fast wake-up time

1 Mbps I2C Fast mode+
SPI with 4- to 16-bit data

frame, HDMI CEC,
16-bit 3-phase MC timer

Calendar RTC with
independent supply,
battery-backed RAM,

separate analog supply,
safety

ARM + ST ecosystem
(eval board, discovery,

SW library)

STM32 F0 Series: Key Features

STM32 F0 series
L1, F0, F1, F2, F4 series: seamless migration amongst 300 pin-to-pin compatible part #s

5

STM32 Journal

next sample time. In fact, the
bus matrix combined with a
5-channel DMA enables the
STM32 F0 to support execution
of code from Flash in parallel
with other memory-memory,
peripheral-memory, or memory-
peripheral DMA transfers.
There are many tools to
assist developers in taking
advantage of the STM32 F0’s
DMA capabilities without
requiring them to become
DMA experts. The ARM DSP
Cortex Microcontroller Software
Interface Standard (CMSIS)
library, for example, provides
signal processing functionality
that has been optimized for
the STM32 F0 and takes full
advantage of the DMA.
An intelligent compiler can
also help developers exploit
DMA technology to its fullest
advantage. IAR Embedded
Workbench, for example, offers
a feature that will automatically
rearrange program data to
maximize the use of the DMA.
This enables developers to
achieve high efficiency without
having to put much forethought
into how to layout the data
space. The compiler achieves
this by analyzing how data
is used by the application.

Consider a program that
copies two different data
structures using DMA. Each
copy operation requires a
separate DMA operation.
However, after the compiler
collocates the data structures
in memory, they can be copied
with a single DMA transfer.
Note that each MCU may use
the DMA in a slightly different
manner. Keil’s MDK-ARM,
for example, abstracts how
the DMA is used from the
application through an API
that prevents code from being
tied to a particular processor.
This enables developers to
migrate applications to other
STM32 devices and know that
code utilizing the DMA will still
perform optimally.

Writing 32-bit Code
Moving from 8-bit to 32-bit
assembly is not trivial, given
the vastly different instructions
32-bit architectures offer; i.e.,
single-instruction, multiple data
(SIMD) instructions work on
multiple data to vastly accelerate
processing. Even moving
between 16-bit architectures
is challenging given that the
peripherals can differ and impact
how application code is written.

www.iar.com

6

STM32 Journal

The STM32 F0 architecture
facilitates a smooth migration to
32-bits. The ability to develop
in embedded C reduces the
learning curve of moving to
a new architecture. In many
cases, engineers are already
familiar with the ARM Cortex-M

architecture. Developers can
further ease migration by using
a tool chain they are already
familiar with, such as IAR
Embedded Workbench and Keil's
MDK-ARM. Finally, developing
for the STM32 F0 is simplified
through the use of the ARM

CMSIS libraries that abstract
much of the underlying hardware
from the application.
Moving to the STM32 F0 will
result in a substantial reduction
in code size because of the
density possible with 32-bit

instructions, on the order of
30% (see Figure 2). With its
32-bit address space, the
STM32 F0 also eliminates
addressing and paging
limitations that complicate
memory management in 8-bit
designs. For example, data

Benchmark
Application 8-bit Math 8-bit Matrix 8-bit Switch 16-bit Math 16-bit Matrix 16-bit Switch 32-bit Math

Floating-Point
Math

Matrix
Multiplication FIR filter

16
-b

it

MSP430 178 86 198 126 90 198 222 1102 136 980

dsPIC 236 420 424 224 552 424 424 2020 464 2256

PIC24 236 420 416 224 552 416 424 2020 464 2256

H8/300H 344 412 444 352 482 478 574 1104 482 1392

MaxQ20 230 252 192 204 328 184 288 1172 398 1478

HCS12 83 188 162 76 262 174 323 2082 219 1917

ATxmega64A1 118 398 338 174 490 350 300 1080 584 1362

ARM7TDMI 636 392 452 636 396 452 620 1832 428 1528

8-
bi

t

8051 233 398 305 452 504 493 909 2190 536 2056

PIC18F242 170 324 208 286 692 282 542 1400 676 2006

ATmega8 134 354 350 198 434 382 342 1088 490 1358

STM32 F0
Compiler Option Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size

Code Size 110 94 68 52 98 120 114 106 68 52 98 120 112 108 640 636 268 84 550 550

Figure 2 The STM32 F0 delivers substantial code size reduction when comparing to other 8/16 architectures. This grid show the code size in bytes for various benchmark
applications. Source: Benchmark applications and results for 8/16-bit: TI MSP430 Competitive Benchmarking (www.ti.com/lit/an/slaa205c/slaa205c.pdf). STM32 F0
code generated with MDK V4.23, MicroLib, and compiler optimization for execution speed or code size.

7

STM32 Journal

sets can be larger than a single
page and there are no longer
“far” addressing penalties.
The use of object-oriented
constructs, as is common with
modern programming and
modeling tools, can also be
implemented without disruptive
fragmentation.
Without question, the best
compiler is the human brain.
Given enough time, a person
can create a highly optimized
program that no compiler can
beat. Programming in assembly
can also be more efficient than a
C version of the same program.
Time, however, is one of the
resources of which developers
don’t have a surplus. In addition,
hand-written code can be
extremely fragile; if the product
specs change in a material
way, many of a programmer’s
optimizations will need to be
completely reevaluated.
The reality is that Keil’s MDK-
ARM and IAR Embedded
Workbench are smart enough
to make excellent coding
choices that might take a
person weeks to evaluate. For
example, how data is laid out
impacts performance. There’s
also the challenge of balancing
optimization techniques like

loop unrolling to memory
footprint. A compiler can make
these decisions for an entire
program in just minutes. Each
of these tools offers numerous
optimization options it can
perform automatically for the
STM32 F0 architecture that are
significantly different than those
typical with 8- and 16-bit MCUs.
These options include data-flow
optimizations such as common
sub-expression elimination and
loop optimizations such as loop
combining and distribution.
They also include advanced
techniques like branch
speculation and executing code
out of sequence.
These development tools for
the STM32 F0 give excellent
results. Compiler efficiency
compared to human coding
has been estimated at 97%.
Put another way, the cost of
achieving that last 3% is on the
order of weeks to months of
development time. In addition,
if a major design change
is required, the compiler
can complete a new set of
optimizations with just a simple
recompile.
As a modern architecture, the
STM32 F0 is supported by
similarly modern tools that

utilize the latest advancements
in compiler, debugger, and
middleware technology to
reduce development time and
effort considerably. Being based
on the Cortex-M architecture,
the STM32 F0 is backed by a
larger ecosystem of tools and
production-ready software than
any other MCU architecture on
the market. In addition, for many
applications where the code
base is small, the tools may be
effectively free. For example,
both IAR Embedded Workbench
and Keil’s MDK-ARM are
free when used for programs
under 32 KB, thus enabling
32-bit design with a low initial
investment.

Advanced Debugging
While the ability to design
demanding applications quickly
is important, developers need
debugging capabilities that
can abstract the complexity of
applications while still providing
full visibility and control during
run-time operation. In addition,
many embedded markets,
including medical and industrial,
require that application software
be certified as well.
The integrated debug
capabilities of the STM32
F0 provide many advanced

capabilities that offer a superior
debug experience compared
to old-fashioned 8- and 16-bit
architectures. For example, the
STM32 F0 architecture features
ARM’s Coresight technology
to help developers analyze,
optimize, and verify program
execution with minimal effort
and cost.
Coresight represents the
latest in advanced debugging
technology. Traditional MCUs
offer only limited run/stop debug
capabilities. To achieve greater
visibility, an in-circuit emulator
on the order of $1000s may be
required, and a different pod will
be required for each MCU in use.
A few of the benefits Coresight
provides which other MCU
architectures do not include
on-the-fly read/write access
and trace capabilities at the
instruction, data, and application
level. As implemented in the
STM32 F0, Coresight also
supports up to 4 hardware
breakpoints and 2 watchpoints
without requiring the use of
intrusive monitoring techniques
that can skew performance.
Developers also have a choice
of many low-cost debug
adapters for the STM32 F0. For
example, the STLink in-circuit

www.st.com/stm32f0

9

STM32 Journal

debugger and programmer,
which links the STM32 F0
target board to a PC via USB,
is $25. For more advanced
debugging, IAR Systems has the
I-Jet debugger while Keil offers
developers its ULINK2 and
ULINKpro debuggers.
These debuggers offer
powerful capabilities that are
often not available for 8- and
16-bit designs. Keil MDK-
ARM tools, for example,
enable comprehensive code
coverage, execution profiling,
and performance analysis to
ensure maximum performance
efficiency. With the I-jet
debugger, IAR Systems is able
to offer non-intrusive power
consumption monitoring at
the board- and chip-level.
Such “power debugging”
enables developers to uncover
opportunities to utilize and tune
hardware to achieve the highest
power efficiency.

STM32 F0 Features
STM32 F0 MCUs have been
designed with real-time
operating system (RTOS) and
kernel support in mind to
enable much tighter integration
with RTOSes like Keil’s royalty-
free RTX. In a typical 8- or
16-bit MCU, for example, the

RTOS and application share
the stack, and complex
nesting problems can arise
that overflow the stack and
crash the system. The only
way to avoid such issues is to
overprovision the stack. The
STM32 F0, in contrast, has two
stacks: one for the application
and one for the RTOS. This
prevents applications from
compromising RTOS integrity.
In addition, RAM overhead is
much lower.
Other companies basing MCUs
on the Cortex-M0 architecture
integrate only the minimum
capabilities an MCU requires.
ST is the only company to offer
Cortex-M0-based MCUs with:
〉〉 Easy Communication: Using

the integrated DMA controller,
the STM32 F0 can support
continuous I2C at a rate of 1
Mbps without bogging down
the CPU. This data rate isn’t
possible to achieve on an 8-
or 16-bit MCU that does not
support DMA.

〉〉 Advanced Digital and Analog
Capabilities: The STM32 F0
integrates a wide range of
IP to facilitate the design of
sensing and control systems.
For example, advanced timers
enable the accurate output

of complex AC waveforms.
On-chip comparators simplify
the design of sensors.
The 12-bit, multi-channel
ADC operating at up to 1
MSample/s allows for fast
and precise data acquisition,
as well as improves system
responsiveness to external
events. Advanced timing
control is enabled using the
32-bit and 16-bit PWM timers
with 17 capture/compare I/O
mapped onto up to 28 pins.

〉〉 Safety Ready: With shrinking
process technologies and
larger memories combined
with frequently changing data,
bit errors from cosmic rays
can occur. For systems that
must meet stringent safety
compliance standards, the
STM32 F0 performs real-
time, hardware-based RAM
parity checking and 16-bit
CRC verification for Flash to
ensure the integrity of memory.
RAM checks are performed
automatically whenever
memory is accessed. Flash
verification is self-managed,
enabling developers to confirm
program integrity upon startup
and when updating firmware
to verify that no bits have been
flipped since they were written.

Double Sourcing
In recent years, the
industry has seen
shortages when devices
are manufactured in a
single location. To ensure
its customers will always
have uninterrupted
access to product,
ST employs a double
sourcing strategy in
which all STM32 devices
are manufactured in at
least two fabs in different
parts of the world. This
prevents product supply
from being vulnerable to
environmental factors that
shut down a particular
production fab. It also
enables ST to meet any
unanticipated rise in
demand more easily by
shifting production among
multiple fabs.

〉〉 Reliability: The STM32 F0
integrates two watchdog
timers, one of which is a
windowed watchdog timer.
These timers, which can
operate in low power modes
as well, provide a higher level

10

STM32 Journal

of reliability not available in
most 8- and 16-bit MCUs. A
Clock Security System (CSS)
enables systems to switch to
internal RC-based clocking in
case of external clock failure
to ensure systems can shut
down gracefully rather than
catastrophically.

〉〉 Optimized Communications:
The STM32 F0 supports the
HDMI Consumer Electronics
Communication (CEC)
protocol. Important for
devices targeted for consumer
markets, this peripheral
enables devices to have smart
control over multiple HDMI
lines. For devices needing

remote control capabilities,
ST provides a full infrared
firmware library.

〉〉 Memory: Memory capacity
ranges from 16 KB to
128 KB Flash

〉〉 1.8V Ready: The STM32
F0 can interface directly to
1.8 to 3.6 V-based devices.
This eliminates the need
for additional conditioning
circuitry 8- and 16-bit
MCUs require.

〉〉 Capacitive Touch Sensing:
To add touch to 8- and 16-
bit MCU-based designs, a
second processor is typically
required. With the STM32

F0, developers can easily
introduce capacitive touch
sensing to applications,
with up to 18 keys and
slider/wheel configurations,
all with a single chip. In
addition, touch sensing can
be implemented with zero
CPU loading when using the
charge transfer method.

Overall, the STM32 F0 provides
an optimal balance of cost,
performance, and peripherals
for embedded applications
(see Figure 3). Rather than tie
developers to a proprietary
architecture with limited tools
and support, ST offers the
industry’s widest Cortex-M
portfolio with more than 300
compatible devices across the
entire STM32 family.
With code-, pin-, and peripheral-
compatibility across the STM32
family, developers can leverage
Cortex-M0-based designs to
M3- and M4-based MCUs
with unparalleled flexibility. For
example, applications designed
using the STM32 F0 are easily
migrated to the STM32 F2 and
STM32 F4. With Keil’s MDK-
ARM and IAR Embedded
Workbench, developers just need
to change the MCU selection
and the compiler handles all of

the details by recompiling the
code. This enables developers
to easily migrate to an MCU with
more performance, memory,
and peripherals without rewriting
the application. As a result,
developers can leverage the
same application and tool chain
across an entire product line and
a variety of MCUs.
Similarly, developers have the
option of designing code on
the STM32 F2 or F4 with the
intention of later downsizing
to the STM32 F0. This enables
design to take place on a
platform with the highest
performance and memory to
accelerate proof-of-concept
design. Once the design has
settled, developers can optimize
it for the STM32 F0.
With the STM32 F0, ST offers a
compelling alternative to 8- and
16-bit devices. For the same
price, developers get more
performance, higher resolution
peripherals, better tools,
wider support, accelerated
development, and faster time-
to-market. To explore how the
new STM32 F0 can bring the
benefits of 32-bit technology
to your designs, the STM32 F0
Discovery Kit is available now
for less than $10.

STM32 F0 Benchmark Positioning

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
CoreMark/MHz

Competitor A (8/16-bit)
Competitor B (8-bit)
Competitor C (16-bit)
Competitor D (16-bit)

STM32 F0 (Cortex-M0)

Figure 3 The STM32 F0 provides an optimal balance of cost, performance, and peripherals for
embedded applications.

www.st.com/stm32f0discovery
www.st.com/stm32f0discovery

11

STM32 Journal

Developing High-Quality Audio for
Consumer Electronics Applications

With the falling cost of
high-performance MCUs,
manufacturers are considering
adding digital audio functionality
to more and more consumer
devices and other embedded
applications. Their goal is to
support the wide variety of media
sources users want to access
such as an iPhone, Internet
radio, external USB devices, and
SD cards.
Achieving high-quality sound
output, however, is non-
trivial. Sound quality depends
greatly upon the final system
configuration, making it difficult
to design even when prototype
hardware is available. In
addition, implementing real-
time digital signal processing
algorithms introduces a
whole new set of concerns
for developers used to MCU-
based design. These include
implementing advanced filters
and processing algorithms,

handling fixed-point issues,
using DSP-like instructions,
and optimizing complex
algorithms for speed, MIPS,
memory, and power.
In this article, we’ll show how
developers can leverage MCU-
based digital signal processing
(DSP) and floating-point unit
(FPU) capabilities to enable
real-time audio playback,
implement enhanced algorithms,
convert between multiple
clock domains, manage high-
speed communications without
impacting audio quality, optimize
designs to balance quality and
cost, and manage other system
tasks such as a graphical
user interface, all with a single
microcontroller.

Consumer Audio
Traditionally, introducing audio
to an embedded application
requires digital signal-processing
capabilities beyond the capabilities

of most MCUs. Even a “simple”
product like an iPod speaker dock
requires a significant number of
advanced audio algorithms to
achieve full performance:
Spatial enhancement: In
an iPod docking station, the
speakers may be only 12-18
inches apart. To create a more
spacious, rich sound, spatial
enhancement is required is
to compensate for the close
proximity of the speakers.
Multi-channel audio: For
systems supporting more than
two speakers, the stereo input
signal requires processing to
create the additional audio
channels.
Equalization: Speakers need to
be equalized to achieve better
sound quality. If the speakers
in use change, the equalization
needs to be adjusted as well.
Developers can employ a
variety of equalization methods,

including graphic and parametric
equalization. For higher-end
applications, developers may
even want to design their own
equalization algorithms using a
tool like MATLAB.
Peak limiting: Speakers exhibit
nonlinearity at louder sound
levels. By applying a time-varying
gain and carefully controlling the
peak levels, the system can play
louder with a minimum amount
of distortion.
Boost: When listening to music
at low volume levels, much
detail, and therefore depth, can
be lost. Boosting of the bass and
certain other frequencies at low
volume levels using loudness
compensation or perceptual
volume-control techniques can
significantly improve perceived
sound quality.
Level matching: Level matching
eliminates the need for users to
adjust the volume for each song

By Paul Beckmann, CEO/CTO, DSP Concepts
Dragos Davidescu, Chief System Architect, STMicroelectronics
John Knab, Application Engineer, STMicroelectronics

12

STM32 Journal

when shuffling through a large
library of albums.
Digital audio has commonly
been implemented in consumer
electronics and embedded
applications using a second
processor dedicated to this task.
To meet market cost pressures,
however, manufacturers need to
be able to process audio on the
host CPU.
In general, it is easier to
implement audio on an MCU
than it is to implement real-time
responsiveness and connectivity
on a DSP. DSPs, while excellent
at processing audio, don’t have
the peripherals or interrupt
responsiveness required for real-
time systems. DSP architectures
are also typically designed for
high-end signal processing
and massive parallelism that
exceeds the requirements of the
typical consumer application. In
addition, DSPs are not designed
to support communication
interfaces like USB, SD cards, or
Wi-Fi, so a DSP-based docking
station would still require a
second processor to handle
connectivity.
With the introduction of DSP
capabilities to MCU instruction
sets, MCUs now have the
advanced math processing

capabilities required to handle
not only basic audio processing
but the advanced algorithms
required to improve quality as
well. In addition, rather than
requiring developers to hand-
code assembly as is typical for
DSP-based designs, MCUs offer
ease-of-use and faster time-to-
market through C programming
and application libraries.
MCUs are also specifically

architected to provide short and
deterministic interrupt latency as
well as ultra low-power operation
for battery-powered applications.

The STM32 MCU + Audio
Architecture
The STM32 architecture from
ST has been designed to
bring 32-bit MCU capabilities
to a wide range of consumer
audio applications, including

multimedia speakers, docking
stations, and headphones. The
STM32 F4, based on an ARM
Cortex-M4 core operating at
up to 168 MHz, also integrates
capabilities such as DSP
instructions and a floating-point
unit to allow manufacturers
to produce consumer audio
applications offering quality
playback at the lowest cost
(see Figure 1).

System

Control
Crypto/hash processor

Power supply
1.2 V regulator
POR/PDR/PVD
Xtal oscillators

32 kHz + 4 ~26 MHz
Internal RC oscillators

32 kHz + 16 MHz
PLL

Clock control
RTC/AWU

SysTick timer

51/82/114/140 I/Os
Cyclic redundancy

check (CRC)

2x watchdogs
(independent and window)

Nested vector
interrupt

controller (NVIC)

MPU

Floating-point unit (FPU)

JTAG/SW debug/ETM

3DES, AES 256
SHA-1, MD5, HMAC

16-channel DMA

Multi-AHB bus matrix

ART Accelerator™

ARM Cortex-M4
168 MHz

STM32 F4

2x 16-bit motor control
PWM

Synchronized AC timer
10x 16-bit timers
2x 32-bit timers

True random number generator (RNG)

Analog

Connectivity

2-channel 2x 12-bit DAC

SDIO
1x USB 2.0 OTG FS

1x USB 2.0 OTG FS/HS
2x CAN 2.0B

3x SPI, 2x I2S, 3x I2C
Camera interface

Temperature sensor

3x 12-bit ADC
24 channels / 2.4 MSPS

Ethernet MAC 10/100
with IEEE 1588

6x USART
LIN, smartcard, lrDA,

modem control

512 OTP bytes

Up to 192-Kbyte SRAM

80-byte + 4-Kbyte backup SRAM

Up to 1-Mbyte Flash memory

FSMC/SRAM/NOR/NAND/CF/LCD
parallel interface

Figure 1 ST has expanded its STM32 MCUs beyond the base Cortex-M architecture with a variety of integrated peripherals
to create a wide range of MCUs that optimize performance, memory, and cost for nearly every embedded application.

13

STM32 Journal

The STM32 F4 offers excellent
audio processing capabilities
(see Figure 2). With its rich
peripheral integration, a single
STM32 F4 can provide a cost-
effective, single-chip solution for
implementing embedded audio
that combines performance,
ease-of-use, connectivity, and
signal processing to achieve
quality audio playback. Key
capabilities of the STM32 F4
for accelerating audio design,
enhancing performance, and
lowering system cost include:

Digital Signal Processing
Instructions: With the STM32
F4, developers have access
to up to 105 DSP-specific
instructions. These instructions
include single-cycle multiply-
and-accumulate (MAC),
saturated arithmetic, and both
8- and 16-bit SIMD integer
operations. Its architecture is
designed to enable high-quality
audio in consumer electronics
and embedded applications in a
more cost-effective manner than
is possible with DSPs.

General Purpose MCUs

Discrete DSPs

Cortex-M4

Specialised Audio DSPs

0 5 10 15 20 25 30

Max
Min

DSP application example: MP3 audio playback

MHz required for MP3 decode (smaller is better!)

DSP Concept

Figure 2 With its Cortex-M4 core, the STM32 F4 offers excellent audio processing capabilities
that exceed the performance of many general-purpose MCUs and discrete DSPs.

www.dspconcepts.com

14

STM32 Journal

Floating-Point Unit: All STM32
F4 devices also have an
integrated floating-point unit
(FPU). While signal-processing
algorithms can be implemented
using fixed-point arithmetic,
this approach adds complexity
in that underflow and overflow
need to be manually managed. In
addition, fixed-point processing
offers less dynamic range than
floating-point, which impacts
many audio functions. With
the integrated FPU, there is no
penalty for retaining this precision.
Code based on floating-point can
also be substantially faster and
requires less memory than fixed-
point code.
32-bit Efficiency: The bus
size of the processor has a
tremendous impact on both
performance and power
efficiency. Even if audio
samples are streaming at 16
bits, the system still needs
32-bits to store intermediate
computations. A 16-bit MCU
or DSP, for example, requires
seven operations (4 multiplies
and 3 additions) just to complete
a single 32 x 32 multiplication.
The STM32 F4 can execute
a 32-bit MAC (multiply and
accumulate) with only one
single-cycle operation.

Multi-Layer Bus Fabric:
The key to real-time signal
processing is maintaining
efficient data flow. In a
consumer audio device,
however, the MCU must
move not only signal data but
manage program memory,
communication ports, and other
system tasks. The complexity
and real-time nature of audio
algorithms also requires
them to be integrated with
application code to ensure that

neither core application tasks
nor audio playback compromise
each other.
The STM32 architecture is
designed to minimize this
problem so that developers
do not need to spend time
resolving potential conflicts.
This is achieved through the low
interrupt service overhead of
STM32 devices combined with
the multi-layer bus fabric that
allows multiple DMA transactions
to occur simultaneously without

burdening the CPU. Figure
3 shows the high level of
parallelism that can be achieved
through simultaneous transfers
over a multi-layer fabric:
〉〉 Program code is executed

from Flash with data stored in
SRAM (red)

〉〉 The compressed audio stream
is received over USB and
stored in SRAM (green).

〉〉 CPU with DSP and FPU
functionality accesses the

120 MHz

Bus masters

In
st

ru
ct

io
ns

D
at

a

Sy
st

em

D
M

A_
M

EM
1

D
M

A_
M

EM
2

D
M

A_
P1

D
M

A_
P2 480 Mbit/s

60 MByte/s

7-
la

ye
r 3

2-
bi

t m
ul

ti-
AH

B
bu

s
m

at
rix

672 MByte/s

672 MByte/s

D D

I I

Bus Slaves

AHB1 peripheral

AHB2 peripheral

FSMC

AR
T

Ac
ce

le
ra

to
r

Flash
1 Mbyte

General-
purpose
DMA1

8 channels

General-
purpose
DMA2

8 channels

Ethernet
MAC 10/100

DMA

AHB1/APB1

AHB1/APB2

64 Kbytes SRAM

SRAM 16 Kbytes

Cortex-M4
with CPU

168 MHz

USB OTG
HS

DMA

100 Mbit/s
12.5 MByte/s

SRAM 112 Kbytes

Figure 3 The multi-layer matrix that interconnects STM32 MCUs with peripherals and memory enables simultaneous transfer between multiple
masters and slaves without requiring involvement from the CPU. This provides STM32 MCUs with a tremendous interconnect
capacity that eliminates peripheral and memory access bottlenecks for the highest operating performance.

15

STM32 Journal

compressed audio stream for
decompression and signal
processing (green)

〉〉 Decompressed MP3 data is
sent from the CPU to SRAM
(yellow)

〉〉 Audio data is output to I2S
through DMA (orange)

〉〉 Graphical icons are transferred
from Flash to the display
through DMA (blue)

Communications Interfaces:
Users want to be able to access
audio data from different sources
and over different interfaces.
With the right mix of interfaces—
including USB (host and device),
Ethernet for Internet Radio,
SDIO, and external memory—
developers can create flexible
devices that support a wide
range of usage models.
In addition to being able to
receive data without loading
the CPU, developers need to
be able to address the many
issues related to streaming
audio, including lost packets and
lack of feedback controls. For
example, USB feedback controls
to prevent under and overflow of
the audio buffer are not always
used or well implemented. This
can result in lost or dropped
packets that impact audio

quality. To overcome this
limitation, developers can utilize
sample-rate conversion (SRC).
SRC is also useful for converting
between audio speeds (i.e., clock
domains) while maintaining audio
fidelity, compensating for slight
mismatches in clock speed, or
for mixing audio from different
sources. For applications that
need SRC, the STM32 F4
requires only 10% utilization,
leaving plenty of headroom for
other signal-processing tasks.
Multiple Clock Sources:
Consumer audio systems require
a number of different clock
domains—including the CPU,
USB, and I2S—that have fixed
frequencies and need to be
accurate as well as free of jitter.
Trying to use the same clock
for each of these can impact
precision. For example, it is
straightforward to achieve a clean
clock at 168 MHz for the CPU,
44.1 KHz for an I2S interface or
48 MHz for USB but not for all
three using a single clock source.
The STM32 F4 integrates two
PLLs for increased clocking
flexibility. The main PLL is used
to generate the system clock
and the second PLL is available
to generate the accurate clocks
needed for high-quality audio.

Complete audio system

STM32 F2
CPU load

STM32 F4
CPU load

Flash
footprint

RAM
footprint

MP3 decoder 17% 6% 23k 12344

MP3 encoder 22.5% 9% 25k 16060

WMA decoder 17.5% 6% 45k 36076

AAC+ v2 decoder 25% 11% 54k 87000

Channel mixer 2.5% 2% 0.6k 16

Parametric Equalizer 16% 12% 2k 300

Loudness Control 4.5% 3.5% 3.25k 632

SRC 22.5% 10% 17.5k 1880

Figure 4 When computing 16- and 32-bit DSP functions, theSTM32 F4 offers a 25–70%
improvement. As a result, systems can drop into sleep mode faster to conserve
power or run more algorithms to further improve audio quality.

In addition to being able to receive data
without loading the CPU, developers need

to be able to address the many issues
related to streaming audio, including lost
packets and lack of feedback controls.
For example, USB feedback controls to
prevent under and overflow of the audio

are not always used or well implemented.

16

STM32 Journal

The ability to source different
clock domains enables designs
based on the STM32 architecture
to maintain a permanent USB
connection and avoid audio
synchronization issues.
Integrated Audio Interfaces:
The STM32 F4 has two full-
duplex I2S standard stereo
interfaces offering less than
0.5% sampling frequency error.
There is also an external clock
input to the I2S peripheral if
an external high-quality audio
PLL is preferred. In addition to

simplifying design, integrating
the I2S interfaces reduces
component count, board size,
and system cost.
MCU Peripherals: The STM32
architecture includes all of the
real-time peripherals required for
even the most demanding MCU-
based application.
The combination of the STM32
F4’s capabilities brings a new
level of performance to audio
applications. Performing
a long 32-bit multiply or
multiply-accumulate (MAC)

operation on an STM32 F2, for
example, takes 3-7 cycles. With
the STM32 F4, this operation
is performed in a single cycle.
When computing 16- and 32-
bit DSP functions, the STM32
F4 offers a 25-70% (see Figure
4) improvement. As a result,
systems can drop into sleep
mode faster to conserve power
or run more algorithms to further
improve audio quality.
In addition to the integrated DSP
capabilities of the STM32 F4,
developers have access to the

CMSIS DSP library to accelerate
development. The CMSIS
DSP library includes a large
number of DSP and floating-
point functions optimized for
the algorithms commonly used
in audio applications. This
library is supplied by ARM for
processors built around the
Cortex-M4 processor. DSP
Concepts is the company that
wrote the CMSIS DSP library.
They have leveraged their
intimate knowledge of the library
to create the audio blocks that
make up their signal processing
design tool, Audio Weaver.

Audio Algorithm Design
Audio Weaver enables
developers to quickly design
the audio processing portion
of their system; i.e., everything
that goes on between receiving
an audio signal and outputting
it. Audio Weaver offers a
GUI-based development
environment that enables
developers to design the signal
flow for their application by
selecting processing blocks
and connecting them using
a drag-and-drop editor (see
Figure 5). Each block has hand-
optimized code behind it, and
the tool automatically creates
the required data structures.

Figure 5 Audio Weaver from DSP Concepts offers a GUI-based development environment that
enables developers to design the signal flow for their application by selecting processing
blocks and connecting them using a drag-and-drop editor.

17

STM32 Journal

Because complex functions are
built from base audio functions,
the final code executes with
no performance or efficiency
losses compared to hand-
coding from scratch.
When algorithm code is written
by hand, each design iteration
requires substantial time
investment since the code must
be optimized and tuned to
see what its actual impact on
sound quality and processing
load are. With Audio Weaver,
the design cycle is much faster,
giving developers the ability to
explore more configurations in
their efforts to increase sound
quality while reducing system
cost. Code is highly optimized
for MIPS and memory usage,
supports floating-point
processors such as the STM32
F4, offers flexible deployment
modules, and does not require
an RTOS to operate. The library
includes over 150 different
audio blocks, including third-
party IP.
With tools like Audio Weaver, it
has become possible to create
highly tuned audio applications
without engineers needing
to have a deep knowledge
of audio processing. For
companies new to audio,

complete reference designs are
available, with assistance from
DSP Concepts to tune them
for the final production system.
Companies that are comfortable
with audio processing can
work with individual audio
blocks that provide basic
functionality and build them
into higher-level processing

algorithms. Even sophisticated
companies can accelerate
design using Audio Weaver as
it provides a framework with
core components that not only
jumpstarts design with highly
optimized code but provides a
development environment that
facilitates fast prototyping and
tuning. For these companies the

value-add of Audio Weaver is
faster time-to-market.

Accelerating Optimization
To speed design, Audio Weaver
supports cross-platform
development. The ability to run
the same algorithms on a PC as
on the STM32 F4 gives engineers
a powerful environment in

which to design and tune the
software in parallel with hardware
development. Once target
hardware is available, the code
can be retargeted for the STM32
F4 and final optimizations made,
resulting in significant time-to-
market savings.
During final optimization,
developers can profile the

MIPS and memory required by
each audio processing stage.
This enables engineers to
measure how much a particular
improvement in sound quality will
cost in terms of CPU utilization
to determine the most efficient
use of processing resources
when many functions have to
operate simultaneously.

Consider the use of different
order filters to equalize the
speakers. A lower-order filter,
for example, may provide a
frequency response that is 3 dB
off of the ideal response while a
higher order filter is off by only
1 dB. The relative difference
in CPU utilization between
these two filters can be used

When algorithm code is written by hand, each design
iteration requires substantial time investment since the

code must be optimized and tuned to see what its actual
impact on sound quality and processing load are. With Audio

Weaver, the design cycle is much faster, giving developers
the ability to explore more configurations in their efforts to

increase sound quality while reducing system cost.

18

STM32 Journal

to determine where to allocate
CPU resources to maximize
sound quality.
At the end of the day, however,
audio quality is not about
response graphs but how it
actually sounds to people. With
many development systems,
engineers have to make
adjustments to code, recompile,
and download code before they
can hear a new configuration.
However, to assess the impact of
a lower-order filter on quality, for
example, developers need to be
able to hear both configurations
right after each other.
Audio Weaver solves this
problem by supporting a
tuning interface that can
change filter characteristics
in real-time. With the ability to
configure and switch between
multiple settings with the click
of a button, developers can
compare two sets of speaker
equalizations or different spatial
processing. Note that the
tuning interface is seamless
and transparent, compared to
instrumenting code that can
impact quality because of extra
loading on the CPU.
The ability to tune quickly and
easily without recompiling can
substantially shorten the time

it takes to optimize a system.
Flexible tuning also simplifies
the optimization process for
developers new to audio.
Note that audio applications are
not comprised solely of audio
processing. To accelerate system
design, DSP Concepts also
provides an extensive range of
software functionality beyond its
extensive audio module library,
including:
〉〉 Real-time kernel
〉〉 Audio I/O management
〉〉 PC/host control interface
〉〉 Boot loader
〉〉 Update manager
〉〉 Flash file system

System-level Design
One of the challenges to
adding audio to embedded
designs is that while many MCU
manufacturers offer reference
designs, audio is typically
not one of the applications
supported.
To address this shortcoming,
ST has invested significantly in
creating digital audio resources
for its customers in order to
offer complete audio reference
designs as well as tools that
enable the design of quality

audio optimized for the STM32
architecture. For example,
ST and its partners offer a
variety of evaluation boards
with audio capabilities. ST also
offers several docking station
reference designs that provide
a representative design that
can be used in a wide range of
embedded applications.
For Apple Made for iPod (MFI)
licensees, ST offers the Apple
iAP application, a complete
solution based on STM32 F2 and
STM32 F4 devices to deliver a
high-quality music experience.
The Apple iAP application
support both simple accessory
and audio streaming accessory
for iPod, iPhone, and iPad
devices. Components include:
〉〉 Either the STM322xG-EVAL

or STM324xG-EVAL board
to which developers connect
their Apple Authentication
Coprocessor (ACP) circuit

〉〉 Free Apple “iPod Accessory
Protocol” (iAP) firmware with
Lingoes for authentication and
control/information data

〉〉 Free USB Host Library with
USB Host HID class for control
and information data

For audio streaming accessories,
the Apple iAP application also
supports:
〉〉 Free USB Host Library USB

Host Audio classes
〉〉 Remote iPod/iPhone/iPAD

control
〉〉 Digital audio streaming
〉〉 Music tag extraction
〉〉 Flash card reader capabilities,

such as using an SD card or
MMC, that can decode audio
files from this media. Optimized
decoders are provided for this
purpose free of charge

Today’s consumer audio devices
are complex systems that
require both high performance
to support quality playback
and flexibility to meet rapidly
changing market expectations.
With its high performance
core, efficient multi-layer bus
fabric enabling simultaneous
data transactions, and the right
mix of MCU peripherals and
connectivity, the STM32 F4 is
an ideal architecture for many
embedded and consumer audio
applications. Developers can
now design systems offering
synchronized digital audio
playback of the highest quality
using a single MCU.

19

STM32 Journal

Bringing Floating-Point Performance and
Precision to Embedded Applications

Hardware-based floating-point
capabilities have long been
an option on high-end MPUs
and DSPs designed to serve
as computational workhorses.
Embedded systems based
on MCUs, however, have
classically used a fixed-point
implementation.
There are many reasons for
this. The types of simple
calculations embedded
systems needed to make
could be handled sufficiently
using fixed-point math. The
resulting code was not only
well-suited to an MCU’s native
mathematical capabilities, it
resulted in faster execution and
was more memory efficient than
an equivalent floating-point
implementation would be. The
only disadvantage of using
fixed-point was the tradeoff
between range and precision,
which could be tolerated in
most cases.

Some of today’s embedded
systems are completely different
from their early predecessors.
They operate at high clock
speeds and need to perform
more complex calculations than
ever before. While processing
and memory efficiency are still
primary design considerations,
a more useful range and higher
precision have become essential
in many applications.
For example, to output high
quality audio, MCUs need
to support a wide dynamic
range so that the system
sounds good at both low and
high frequencies. Medical
applications, such as heart-rate
monitors and glucose meters,
need to measure more subtle
signals and quantities. For
industrial applications, higher
precision in the MCU enables
developers to use lower quality
components in other parts of
the system, reducing overall

system cost. And with the
increasing use of capacitive-
sensing technology, nearly
every embedded application
can benefit from detecting user
inputs with greater accuracy,
especially on displays with
limited surface area.

Floating-Point vs
Fixed-Point
The balanced combination of
range and precision in a floating-
point number comes from its
separation of the exponent and
mantissa. When a number is
stored in a fixed-point format,
the position of the exponent is
assumed and all of the bits are
reserved for the mantissa (i.e., the
actual digits used to represent
the number). The issues that
arise with fixed-point formats
are similar to those associated
with reading an ADC: the
wider the range of values to be
represented, the less resolution

there is at the lower end of the
range. If very small changes in
value need to be captured, the
range must be more narrow.
Developers, then, must choose
between range and resolution.
Floating-point addresses these
issues by dedicating a few bits to
an exponent to track the decimal
point. For example, the single-
precision format supported
by the STM32 F4 uses one bit
for the sign and 8 bits for the
exponent, leaving 23+1 bits for
the mantissa (the normalized
format used adds an implicit
bit to the 23 bits stored in the
floating-point number). As such,
a single-precision floating-point
number gives a more useful
range and precision combination
compared to 8-, 16-, or even
32-bit fixed-point numbers
which either give a wide range
with greatly reduced precision
or higher precision with a much
smaller range.

By Olivier Ferrand, Application Engineer, STMicroelectronics
Stephane Rainsard, Application Engineer, STMicroelectronics
Abdelhamid Ghith, Application Engineer, STMicroelectronics

20

STM32 Journal

The 32-bit single-precision format
is part of the IEEE 754 Floating-
Point Arithmetic standard. This
standard represents decades
of experience and provides a
common approach for supporting
floating-point arithmetic that
unifies processors, coding tools,
and high-level design tools.
Specifically, the 754 standard is
the basis for the floating-point
data types used in C. In turn,
these floating-point C formats are
used in code generated by high-
level modeling/Meta language
tools like MATLAB and Scilab.
One of the key benefits of using
floating-point is that it enables
developers to make more
efficient use of C and powerful
algorithm development tools that
have previously been reserved
for DSP- and MPU-based
design. Generally speaking,
floating-point numbers are easy
to manipulate in C. High-level
tools further accelerate and
simplify development by enabling
developers to describe complex
algorithms in equation form and
then quickly generate efficient
C code rather than requiring
them to hand-code algorithms
in assembly. In addition, these
high-level tools offer tremendous
flexibility in allowing developers
to rapidly implement changes

to algorithms without having
to completely rewrite and re-
optimize algorithm code. The
end result is significant savings
in development time and cost
savings. Such tools also offer a
powerful means for developers
to test and validate applications.

Software-based
Floating-Point
In the past, developers had
a limited number of ways in
which they could utilize floating-
point technology in MCU-
based designs to increase
computational precision.
Introducing a second processor
to handle calculations was
often too expensive to consider.
Alternatively, while the design
could be migrated to a powerful
MPU or DSP, neither type of
architecture is as well-suited
for the real-time demands of
embedded systems as an MCU.
The availability of high-
performance MCUs made it
possible for developers to bring
in a floating-point library to
perform calculations in software.
While such libraries enabled
developers to use floating-point
algorithms, they came at the
expense of significantly reducing
system throughput.

Such libraries also tended to
be quite large and introduced
significant processing overhead.
For example, every operation
between two numbers had to
first align the numbers to have
the same exponent and then,
after performing the operation,
round the result and code it
back into the fixed-point format.
While all of these actions were
performed by the floating-point
library and were not directly
visible to developers, they still
resulted in significantly degraded
performance, greater processing
latency, and an increased
memory footprint.

If none of these alternatives was
feasible and developers still
needed the flexibility that high-
level modeling tools bring to the
design process, they had the
alternative to manually convert
the floating-point operations in

the C code generated by the tool
into a fixed-point implementation.
The downside of this approach
is the significant time investment
required to adapt the code
combined with the inflexibility to
easily modify the algorithm later in
the design cycle.

The STM32 F4
Advantage: Integrated
Floating-Point Technology
To stay competitive, developers of
precision and high-performance
embedded systems need to
have access to floating-point
functionality without sacrificing
performance or memory efficiency

through the use of a software-
based floating-point library or
having to adapt the code by hand
to a fixed-point implementation.
With the STM32 F4 MCU
architecture, developers have

To stay competitive, developers of
precision and high-performance embedded
systems need to have access to floating-

point functionality without sacrificing
performance or memory efficiency.

www.st.com/stm32f4

22

STM32 Journal

the option of bringing floating-
point efficiency to an extensive
range of low-cost embedded
applications. The STM32 F4
integrates a floating-point unit
(FPU) to execute these operations
natively in hardware. The FPU is
fully compliant with the IEEE.754
standard and has its own 32-
bit single-precision registers to
handle operands and results.
These registers can be viewed
as double-word registers to
enable more efficient load and
store operations. The context
of the FPU can be saved to
the CPU stack using several
methods based on the application
architecture and whether registers
need to be preserved or not.
The FPU supports the five different
classes of numbers defined by
the 754 standard—normalized,
denormalized, zeros, infinites,
and NaNs (Not-a-Number). It also
supports the five exceptions of the
standard—overflow, underflow,
inexact, divide by zero and invalid
operation—allowing applications
to handle operations such as trying
to compute the square root of a
negative number (i.e., resulting in
NaN + invalid operation exception).
Exceptions are “untrapped”,
meaning that the FPU will return
the result as specified by the 754
standard and raise an exception

flag. If needed, developers can also
use the STM32 F4 floating-point
global interrupt to address the issue.
The integrated FPU of the
STM32 F4 offers a number
of advantages to embedded
designers:
〉〉 Access to the more useful

range and precision that
floating-point brings

〉〉 Reduced coding complexity by
being able to work with numbers
in a more natural format

〉〉 Greater throughput compared to
software floating-point libraries.

〉〉 Accelerated application
development as C code
generated by high-level
tools can be used without
modification or wrappers

〉〉 Smaller code footprint since
instructions that used to be
multiple lines of code in software
libraries are now implemented
with a single instruction

〉〉 Simplified debugging as macro
calls in floating-point libraries
are eliminated

Effectively, the STM32 F4’s FPU
reverses the value proposition
between fixed- and floating-point
for many MCU-based designs.

Seamless Integration
Figure 1 shows the difference
between the assembly code
generated when an FPU
is available on an MCU as

Figure 1 There is a significant reduction in code size when an integrated FPU is available (code on left) than when one is not (code on right).

float function1(float number1, float number2)
{
 PUSH {R4,LR}
 MOVS R4,R0
 MOVS R0,R1
MOVS R1,R4
 BL __aeabi_fadd
 MOVS R1,R0
MOVS R0,R4
 BL __aeabi_fdiv
 POP {R4,PC}

float function1(float number1, float number2)
{
float temp1, temp2;

temp1 = number1 + number2;
 VADD.F32 S1,S0,S1
temp2 = number1/temp1;
 VDIV.F32 S0,S0,S1
#
return temp2;
 BX LR
}

1 assembly instruction

Call Soft-FPU

FPU assembly code generation
float function1(float number1, float number2)
{
 float temp1, temp2;

 temp1 = number1 + number2;
 temp2 = number1/temp1;

 return temp2;
}

23

STM32 Journal

compared to when one is not.
The example is a simple one,
adding number1 and number2
together and storing the result
in temp1. Number1 is then
divided by temp1 and stored
in temp2.
When an FPU is available, the
compiler directly uses native
FPU instructions (see add and
divide instructions in the code
on the left). When an FPU is not
available, however, the compiler
inserts macro calls to the
software floating-point library to
perform the function (see code
on the right). These functions
comprise multiple instructions
that take many more cycles
to complete the calculation.
Although the difference is only
a few instructions, the extra
overhead represents a high
percentage of the algorithm’s
overall load on the CPU. When
considered over the whole
of an application, the impact
on processing efficiency is
tremendous.

Performance by the
Numbers
The following example clearly
illustrates the benefit of having
an integrated FPU. Figure 2
shows the code for a simple
mathematical fractal known as the

Julia set, given by the equation:
 Zn+1 = Zn

2 + c
where the sequence for each
x+ i.y point is computed with:
 c = cx + i.cy

This algorithm provides an
effective way to show the
impact on performance of the
STM32 F4’s FPU since no code
modification is required to utilize
it. In fact, the only difference is
whether the FPU is activated
during compilation.
Figure 3 shows the time spent
for the calculation of the Julia set
using different zooming factors.
As can be seen, the presence
of an FPU yields an increase
in performance on the order of
11.5 to 17 times faster. Again, no
modification to code is required,
just selecting the FPU in the
compiler options.
For applications that need to
implement signal processing
capabilities or operate on
multiple data in parallel,
STM32 F4 MCUs have a
versatile architecture that
also implements hardware-
based DSP capabilities. The
availability of both an FPU and
DSP instructions in the STM32
F4 provides developers with
a full range of capabilities to

void GenerateJulia_fpu(uint16_t size_x, uint16_t
size_y, uint16_t offset_x, uint16_t offset_y, uint16_t
zoom, uint8_t * buffer)
{
 float tmp1, tmp2;
 float num_real, num_img;
 float radius;

 uint8_t i;
 uint16_t x,y;

 for (y=0; y<size_y; y++)
 {
 for (x=0; x<size_x; x++)
 {
 num_real = y - offset_y;
 num_real = num_real / zoom;
 num_img = x - offset_x;
 num_img = num_img / zoom;
 i=0;
 radius = 0;
 while ((i<ITERATION-1) && (radius < 4))
 {
 tmp1 = num_real * num_real;
 tmp2 = num_img * num_img;
 num_img = 2*num_real*num_img + IMG_CONSTANT;
 num_real = tmp1 - tmp2 + REAL_CONSTANT;
 radius = tmp1 + tmp2;
 i++;
 }
 /* Store the value in the buffer */
 buffer[x+y*size_x] = i;
 }
 }
}

Figure 2 Algorithmic code, such as for the Julia set as shown here, requires no
modification to take advantage of the STM32 F4's hardware-based floating-
point capabilities.

24

STM32 Journal

implement the wide variety
of algorithms embedded
applications require. Each
accelerates different types
of processing and together
they complement each other
to enable the most optimized
implementation based on
performance, memory, and ease
of programming.
The ease of migrating an
existing application to
seamlessly take advantage
of the STM32 F4’s integrated
FPU capabilities is important

as well. Consider an STM32 F2
application executing a floating-
point FIR filter based on the
CMSIS DSP library available
through ARM. Figure 4 shows
the relative time it takes to
perform the FIR filter 100 times
on an STM32 F2 with no FPU or
DSP capabilities using a purely
software implementation to
make the necessary floating-
point calculations.
When the same code is compiled
for the STM32 F4 to leverage
the FPU in hardware, there is

100

80

60

40

20

0
32-bit float

no FPU
32-bit float

FPU
16-bit fixed-point
SIMD optimized

10X improvement
Best compromise

Development time vs.
performance 17.9X improvement

Best performance
requires effort for proper

data management

FIR filter execution time (using CMSIS DSP library)

Figure 4 The relative time it takes to execute a FIR filter is 10X better when utilizing the STM32
F4's FPU. If more headroom is needed, the use of the 16-bit fixed-point SIMD (single
instruction, multiple data) optimized instructions that are part of the DSP capabilities
of the STM32 F4 increase performance by 17.9X.

Frame Zoom Duration
with FPU

Duration
without

FPU (microlib)
Ratio

Duration
without
FPU (no
microlib)

Ratio

0 120 222 3783 17.04 2597 11.70

1 110 194 3276 16.89 2243 11.56

2 100 167 2794 16.73 1906 11.41

3 150 298 5156 17.30 3558 11.94

4 200 312 5412 17.35 3740 11.99

5 275 296 5124 17.31 3540 11.96

6 350 284 4905 17.27 3389 11.93

7 450 289 4989 17.26 3448 11.93

8 600 273 4705 17.23 3251 11.91

9 800 267 4592 17.20 3173 11.88

10 1000 261 4485 17.18 3100 11.88

11 1200 255 4374 17.15 3023 11.85

12 1500 242 4138 17.10 2860 11.82

13 2000 210 3555 16.93 2455 11.69

14 1500 242 4138 17.10 2860 11.82

15 1200 255 4374 17.15 3023 11.85

16 1000 261 4485 17.18 3100 11.88

17 800 267 4592 17.20 3173 11.88

18 600 273 4705 17.23 3251 11.91

19 450 289 4989 17.26 3448 11.93

20 350 284 4905 17.27 3389 11.93

21 275 296 5123 17.31 3540 11.96

22 200 312 5412 17.35 3740 11.99

23 150 298 5156 17.30 3558 11.94

24 100 167 2794 16.73 1906 11.41

25 110 194 3276 16.89 2243 11.56

Figure 3 This table shows the time spent for the calculation of the Julia set using different
zooming factors. The presence of an FPU yields an increase in performance on
the order of 11.5 to 17 faster with no modification to code required.

25

STM32 Journal

an immediate 10X improvement
in relative performance (i.e.,
factoring out the impact of
clock speed). Just by changing
processors and activating
the FPU, there is a significant
performance advantage. This
one change to the design is
enough to yield a tremendous
amount of headroom for
additional tasks, depending upon
the application.
If more headroom is needed,
the performance of the FIR
filter can be further improved

through the use of the 16-
bit fixed-point SIMD (single
instruction, multiple data)
optimized instructions that are
part of the DSP capabilities of
the STM32 F4. For example,
when using the SIMD
optimized FIR algorithm of the
CMSIS library from ARM, the
performance improvement is
17.9X, again not considering
clock speed.

Unparalleled Flexibility
Traditionally, when designing a
DSP-based system, developers
have to choose between fixed-
and floating-point architectures.
Floating-point comes at a price
premium, and manufacturers
have had to balance this
added cost against the extra
complexity in application
development that comes when
using fixed-point. While the
FPU is an optional component
of the ARM Cortex-M4
architecture, ST has designed
its STM32 F4 family so that
every device offers an FPU. In
this way, developers always
have access to floating-point
performance and precision
without compromise.
The bottom line is that the
STM32 F4 provides developers
with a flexible, high-performance
architecture that offers the real-
time responsiveness of an MCU
with the precise floating-point
and digital signal processing
capabilities that today’s
embedded designs need. The
ability of the STM32 F4’s FPU
to perform fast mathematical
computations on C-based float
data is a key benefit for many
application tasks that require
precision, including loop control,

audio processing, sensor signal
conditioning, digital media
decoding, and digital filtering, to
name just a few.
The availability of an FPU
speeds complex algorithm
development, all the way from
high-level design tools down to
software generation. Hardware
native support for floating-point
operations simplifies coding and
substantially accelerates product
development by enabling the
most efficient implementation for
any mathematical calculation.
Code that has been generated
by such tools to be used directly
by the FPU will offer the highest
level of performance.
The faster processing an FPU
brings to applications offers
either more headroom to
support new functionality or
faster time-to-sleep for power-
sensitive applications. It also
enables developers to introduce
more complex processing and
functionality to applications
than was previously possible
with traditional MCUs. As a
result, when implementing a
mathematical algorithm on an
STM32 F4, developers never have
to choose between performance
and development time.

Figure 5 A top-level view of the Julia set.

26

STM32 Journal

Achieving Ultra-Low-Power Efficiency
for Portable Medical Devices

The availability of low-cost, full-
featured microcontrollers has
created a revolution in the health
industry leading to equipment
migrating from the hospital and
into patients’ homes. Designing
these portable medical devices
presents new challenges for
engineers, such as implementing
precision analog processing
requiring complex calculations
and creating a system that is
simple and comfortable to operate
even for physically-challenged
users. In addition, these devices
have to be able to run as long as
possible without having to change
or recharge batteries, even after
sitting on a warehouse shelf for up
to 18 months. To meet the unique
requirements of portable medical
devices, developers need an
advanced processor architecture
that combines performance,
ultra-low-power process
technology, low-cost, and
efficient power management and
communications capabilities.

Designing for Medical
Applications
Next-generation medical
equipment is evolving along
two primary paths: sports and
personal health. Both markets
require innovation that enables
portable devices to collect more
run-time data and complete
advanced calculations to create
a comprehensive profile of a
person’s current condition. Within
personal health, developers
also need to understand the
special requirements of emerging
disposable devices.
The portable medical device
market is extremely strong.
Consider that with 8.3% of the
US population suffering from
diabetes, a portable glucose
meter is an essential tool for
individuals who need to monitor
their glucose for conceivably the
rest of their lives. Similarly, an
electrocardiogram (ECG) monitor
enables people at risk for any

number of conditions to record
their ECG waveform at home. In
addition to eliminating the need
for multiple office visits, home-
based testing gives doctors a
more comprehensive patient
history to work with.
Portable handheld medical
devices have a stringent set
of requirements (see Figure 1.)
Given that prospective users can
be from all walks of life, devices
must be as simple to use as
possible, with limited or no setup
required. They also need to be
comfortable to use and operable
even by physically-challenged
users. In general, the display
must be large for ease of reading
and utilize a minimum number of
buttons to avoid confusing users.
Ideally, as many functions as
possible need to be automated
so that users don’t have to be
trained how to use the device.
If the device has a touchscreen,
the GUI must be intuitive
and have a limited number of

operating modes. Both low cost
and low power consumption
are critical as well, and devices
need to be able to run as long
as possible without having to
change or recharge the battery.

By Jean J. Labrosse, Founder, CEO and President, Micriµm
Jim Lombard, Application Engineer, STMicroelectronics

〉〉 Easy and simple to operate

〉〉 Large display

〉〉 Minimal number of large
operator buttons

〉〉 Batteries are easy to
change, easy to recharge,
or are sufficient to last
for the operating life of
the device

〉〉 Safe and accurate
operation

〉〉 Low cost

〉〉 Low power

〉〉 Simple connectivity

〉〉 Audio feedback

Figure 1 Common Product Requirements for
Portable Medical Devices

27

STM32 Journal

An important trend in medical
applications is the use of
disposable devices. High-
volume devices such as heart-
rate monitors can provide
medical professionals with
important data that is useful in
identifying issues before they
become full-blown problems;
e.g., by having a patient track
his or her heart rate for a few
weeks after an operation, a
doctor can verify the patient’s
successful recovery.
The use of disposable devices
offers many benefits. Rather than
require patients to purchase a
monitoring device designed to
operate for years, the hospital
can provide a “disposable”
version that can perform the
task reliably for weeks at a
significantly lower cost. This
strategy also enables hospitals
to leverage innovations in
technology faster.
Designing a medical device
for limited use, however,
substantially shifts the design
mindset. For example, device
cost becomes significantly more
important when the revenue
stream from consumables is
weeks rather than years. Devices
also have to be ready to operate
out-of-the-box, so parameters

such as which test strips are
going to be used need to be
preprogrammed into devices by
manufacturers. Power efficiency
becomes more critical as well.
Even though they will only be
used for a handful of weeks,
devices may first sit on the shelf
for up to 18 months. During this
time, the device is in a low power
mode with the real-time clock
running. With an ultra-low-power
MCU, it is possible to achieve
this without requiring the user to
change batteries.

The STM32 Architecture
With the STM32 architecture,
ST offers developers a variety
of options for balancing cost,
power, and performance.
With its smaller die, reduced
instruction set, and smaller
memory footprint, the STM32
F0 provides excellent power
efficiency at a very low cost.
This is an ideal MCU for
applications that don’t need
to operate longer than six
months or that use rechargeable
batteries. For applications where
power is tantamount, such as
devices operating on a coin cell,
the STM32 L1 is optimized for
ultra-low power performance.
For devices needing more
processing capabilities and

www.micrium.com

28

STM32 Journal

connectivity, the STM32 F1,
STM32 F2, and STM32 F4
offer an increasing range of
capabilities.
The STM32 F0 is based on the
ARM Cortex-M0 core. While
other manufacturers also offer
MCUs based on this core,
ST has integrated its “STM32
DNA” into the STM32 F0 to
create an MCU that provides
efficient data processing with
the key peripherals MCU-
based applications require.
The STM32 F0 also offers DMA
capabilities to accelerate data
processing and enable the
lowest power operation even
when sampling the ADC at
a high data rate. With MCUs
that have a lower level of
integration, developers have to
make compromises, such as
settling for an 8-bit ADC rather
than having access to the 12-
bit ADC of the STM32 F0.
For complex medical systems
that involve extensive
computations, power
consumption can be reduced
by introducing the STM32 F0
as a second processor. When
a system is in a low power
mode, for example, it must still
manage the UI and incoming
data over its interfaces. Using

System ARM Cortex-M3 CPU
32 MHz

Touch sensing

Connectivity

Analog

Display

Encryption

Control

Power supply
Internal regulator

POR/PDR/PVD/BOR

Xtal oscillators
32 kHz + 1 ~24 MHz

Internal RC oscillators
37 kHz + 16 MHz

PLL

Clock control

37/51/83/109/115 I/Os

Voltage scaling 3 modes

6 to 8x 16-bit timer

1x 32-bit timer

Cyclic redundancy
check (CRC)

RTC/AWU
2x watchdogs

(independent and window)

Internal multispeed
ULP RC oscillator
64 kHz to 4 MHz

STM32 L15x

Nested vector
interrupt

controller (NVIC)

JTAG/SW debug

AES (128 bits)*

Up to 12-channel DMA

Embedded Trace
Macrocell (ETM)

Memory protection
unit (MPU)

Analog I/O groups
Up to 39 touchkeys

LCD driver
(8x40 / 4x44)

AHB bus matrix

32- to 384-Kbyte
Flash memory, dual bank, RWW

10- to 48-Kbyte SRAM

FSMC

2x 12-bit DAC

12-bit ADC
Up to 40 channels

2x comparators

3x op-amps

Temperature sensor

USB 2.0 FS

3 to 5x USART

2 to 3x SPI

2x I2C

SDIO

Up to 128-byte backup data

4- to 12-byte EEPROM
Boot ROM

Abbreviations:
AWU: Auto wakeup from halt
BOR: Brown out reset
I2C: Inter integrated circuit

PDR: Power down reset
POR: Power on reset
PVD: Programmable voltage detector

RTC: Real time clock
SPI: Serial peripheral interface
USART: Universal sync/async receiver transmitter

Note: * STM32L16x only

Figure 2 The STM32 L1 family is built on ST’s 130 nm ultra-low leakage process technology that minimizes node capacitance
for ultra-low-power operation and efficiency.

29

STM32 Journal

the primary host processor to
perform these operations will
use substantially more power
than having a more power-
efficient STM32 F0 dedicated
to these tasks.
For the highest power
efficiency, ST offers its STM32
L1 family (see Figure 2). Based
on the ARM Cortex-M3, the
STM32 L1 is built on ST’s 130
nm ultra-low leakage process
technology that minimizes node
capacitance. This, combined
with how the ARM Cortex
RISC architecture reduces the
overall number of active nodes,
creates a powerful combination
for ultra-low-power operation.
Providing 32-bit performance at
up to 32 MHz, STM32 L1 MCUs
offer up to 384 K Flash and 48
K SRAM, as well as from 48 to
144 pins to support high I/O
applications.
With the STM32 F1, STM32
F2, and STM32 F4 families,
developers have access to a
tremendous range of processing
capacity and connectivity.
The STM32 F1 is based on
a Cortex-M3 core running at
up to 72 MHz. For higher-end
applications, the STM32 F4
offers a 168 MHz Cortex-M4
core with both integrated

floating-point (FPU) and
digital signal processing (DSP)
capabilities. In addition, these
MCUs have multiple DMAs
and a multi-layer bus matrix to
offload the CPU and maximize
data throughput.

Power Efficiency
There are many ways the STM32
architecture optimizes power
consumption. For example,
the STM32 L1 has an internal
LDO regulator that can be
programmed to three discrete
voltage levels. Since energy
consumed is proportional to the
square of the core voltage, even
a very small change in voltage
can produce dramatic results.
This allows developers to keep
the STM32 L1 running at 1.2V
and only switch to a higher
performance range when a
specific task needs to run faster.
Integrated DSP capabilities
in the STM32 L1 also speed
complex algorithm processing.
This is in addition to the
power/performance advantage
32-bit architectures have
compared to an 8- or 16-bit
MCUs. With its wider bus, the
STM32 can perform tasks such
as moving memory or complex
mathematics much faster
and more efficiently as well.

The STM32 L1 also provides
multiple, industry-leading low-
power modes (see Figure 3),
dynamic voltage scaling, and
the ability to run out of RAM
and disable the Flash controller

to conserve power. It also
integrates a programmable
voltage detector that can
monitor battery voltage using
less current than an ADC.

Run
230µA/MHz

From
FLASH

Range 3

Run
186µA/MHz

From
RAM

Range 3

Low Power
Run

@ 32 KHz

Low Power
Sleep

@ 32 KHz

Stop with
or without

RTC

Standby
with or
without

RTC

CPU on
Peripherals activated

RAM & context preserved
Backup registers preserved

STM32L15x Ultra-Low Power Consumption

10.4µA
6.1µA 1.30µA/

0.43µA
1.0µA/
0.27µA

Figure 3 The STM32 L1 provides multiple, industry-leading low-power modes to maximize
device operating power efficiency.

The STM32 L1's high level of integration
enables it to provide a single-chip solution,
with the exception of a few analog signal

conditioning circuits, for many portable medical
applications, including glucose meters, heart-

rate monitors, and pulse oximeters.

30

STM32 Journal

The STM32 L1’s high level of
integration enables it to provide
a single-chip solution, with
the exception of a few analog
signal conditioning circuits,
for many portable medical
applications, including glucose
meters, heart-rate monitors,
and pulse oximeters. For
example, in a glucose meter
(see Figure 4), the STM32
L1 can automatically wake
from sleep when a test strip
is inserted into the device. Its
2-channel DAC can be used to
generate a strip bias, enable
strip calibration, and output
audible instructions and test
results. Timers accurately
control the ADC trigger for
sample measurement, onboard
comparators measure correct
sample staging, and the
temperature sensor logs the
ambient temperature for use in
calculating results. Developers
can also use the integrated
comparators to create a power-
efficient analog watchdog that
monitors an input and wakes
the STM32 L1 when either the
upper or lower threshold is
exceeded (see Figure 5).
A key manner in which the
STM32 architecture conserves
power is through the ability of
the CPU to sleep during ADC

sample capture. To achieve this,
the entire analog data capture
chain needs to be completely
automated, with no need for
CPU intervention at any point
after the chain is initiated.
Specifically, after the CPU
configures and starts the auto

sample capture, it enters sleep
mode. Between samples, the
ADC enters an automatic shut
down mode until a timer triggers
it. The ADC captures the current
sample, using the DMA to store
the data in SRAM, and then
shuts down again. This process

repeats until the entire capture
sequence is complete. The
DMA will then wake the CPU to
process the samples that have
been stored in SRAM.
The power savings can be
significant using the unique
ability of the STM32 L1 to

CORTEXTM-M3
CPU 32 MHz

With MPU

2 AA battery

STM32 L1

DMA Controllers

Timers
PWM

2 x Comparators

2 x 12-bit DAC

1 x 12-bit ADC
26 channels/

1Msps

Data EEPROM 4KB

Up to 16KB SRAM

64KB-128KB
Flash Memory

8x40
Segment LCD

2 x I2C

GPIOs

G
lu

co
se

Te

st
 S

tri
p

Vout

Cal
Reference

Temp
Sensor

Strip Detect

Internet

Power Supply
Reg 1.8V/1.5V/1.2V
POR/PDR/PVD/BOR

RTC/AWU +
80B Backup Regs

USB 2.0 FS Host PC

LCD Panel
8 x 40

USER Buttons

Voice

Figure 4 The STM32 L1’s high level of integration enables it to provide a single-chip solution, with the exception of a few
analog signal conditioning circuits, for many portable medical applications such as blood glucose meters.

31

STM32 Journal

power down the ADC between
samples. Consider an ECG
monitor where the sampling rate
is 1 KHz or one sample every 1
ms. The ADC of the STM32 L1
consumes at most 900 µA and
has a capture time of only 1 µs
for a power duty cycle of 0.1%.
If the STM32 L1 were a typical
MCU, the ADC would consume
full power even when it is not
capturing samples. Thus, if
the system were using a 1 ms
measurement window, the ADC
would draw 900 µA during a
power duty cycle of 100%.
With the automatic power down
control mode of the STM32
L1, however, the ADC is able
to power down for the majority
of time between samples.
Figure 6 shows actual power
consumption numbers for
various operating conditions. The
difference in power consumption
is dramatic between when the
ADC is left on continuously
versus using automatic power
down control saving mode,
dropping in the lowest power
consumption example from 900
µA to 150 µA at 32 kHz.
Note that the STM32 L1 has
the flexibility to scale the CPU
clock while keeping a constant
16 MHz clock available for ADC

conversion. This means that the
CPU can run at a frequency of 32
kHz while the ADC maintains a 1
MSPS sampling rate while only
drawing 150 µA.

Precision Analog
Many medical applications require
the ability to read very small
signals. For example, an ECG
monitor has to capture the very
small electrical signal generated by
the heart muscle while removing
the 50 or 60 Hz noise signals
that are common in electrodes
attached to the human body.
MCUs typically offer an 8- or 10-
bit ADC. With its 12-bit ADCs,
STM32 MCUs enable developers
to achieve greater precision when
measuring the weak signals
typical of the human body. In
addition, with sample rates up to
1 Msample/second, developers
have the headroom to access
even more accuracy through
oversampling. This enables
devices to operate in noisy
environments and applications
that could not be served by an
MCU with only an 8-bit ADC.

Power-Efficient
Communications
The STM32 architecture offers
a wide range of interfaces,

Figure 5 Developers can use the integrated comparators to create a power-efficient analog
watchdog that monitors an input and wakes the STM32 L1 when either the upper or
lower threshold is exceeded.

COMP1

COMP2

Upper threshold:
VREFINT = 1.22V

Lower threshold:
Multiple source

Input voltage

Window comparator
configuration switch

–

+

+

–

Figure 6 The automatic shut down mode of the STM32 L1 turns off the ADC for the majority of
time between samples to provide dramatic savings in power consumption compared
to when the ADC must be left on continuously.

CPU running at ADC current consumption (in µA)
(ADC in continuous mode, delay of 15 cycles between channel

conversions, conversions last 1µs (16 cycles at 16MHz)

ADC is running
in Normal Mode **

ADC is On
in Power Saving Mode***

16MHz (from HSI) 1453µA 630µA

4MHz (from MSI)* 1453µA 445µA

1MHz (from MSI)* 1000µA 258µA

32kHz (from MSI)* 900µA 150µA

* : HSI is On ** : PDI=PDD=0 *** : PDI=PDD=1

32

STM32 Journal

including Ethernet (available
on the STM32 F1, F2, and F4),
USB (available on the STM32
L1, F1, F2, and F4), SPI, SDIO,
and CAN. For applications that
only transmit data a few times
a day, interface current has
minimal impact on operating
life. However, for an application
like a heart-rate monitor which
may be constantly transmitting
data, the efficiency of the
STM32 L1’s peripherals can
provide substantial benefit.
With integrated USB and/or
Ethernet, developers can support
connectivity at the lowest cost.
Some devices may need
to support both USB and
Ethernet. By abstracting the
communications interface, the
application won’t need to know
which type of link it is using.
Developers can achieve this by
creating a data in/out function
that determines the actual data
interface to be used in any
particular operating circumstance
and applies the appropriate
communications APIs.
Developers can also take steps
at the application level to ensure
power efficient transmissions.
For example, collecting data for
a short time and then bursting it
will conserve power compared to
continuous transmission.

For devices that will connect
directly to the Internet and
transmit personal health data,
security is essential. This
will impact power efficiency
since security handshaking
will increase the time the
communications link must be
active. The STM32 F2 and
STM32 F4 minimize transmit
processing latency with an
integrated security engine that
accelerates AES 256, 3DES,
SHA-1, MD-5, and HMAC
processing.
Using an off-the-shelf stack
substantially speeds time-to-
market. For example, the 40
standard APIs in the Micriµm
µC/TCP-IP stack encapsulate
more than 150,000 lines of code.
This stack has been designed
to minimize memory usage
and so further reduce power
consumption. Extensions to the
stack are also available, such as
SSL support.
Micriµm is also introducing
IPv6 over IPv4 support to its
µC/TCP-IP stack. IPv6 is an
important enabling technology
for medical applications. With the
virtually unlimited number of IPv6
addresses available, individual
devices can be assigned a
unique IP address. This enables

devices and patients to be
identified automatically and
without interaction from users
who may not be tech-savvy
enough to register a device
online. It also future-proofs
devices to be able to be used
in the years to come as IPv4 is
phased out.
To further simplify device
connectivity, ST offers the
ST Healthcare Library that is
certified for the USB Personal
Health Device specification.
This spec supports different
subclasses of common medical
devices and enables doctors
and patients to connect
seamlessly over the Internet.
The library brings remote
monitoring capabilities to
every STM32-based design,
as well as accelerates time-
to-market. In addition, the
library components have
been tested and certified,
enabling developers to bypass
several certification tests with
confidence that the stack
will perform as required. The
stack footprint is very small
at just 9.2 K Flash and 2.9 K
RAM for a typical thermometer
application. A thermometer
reference demo is available on
the STM32 L1 evaluation board.

Real-time Integration
To enable a portable device to
support a wireless interface
with only 3AAA batteries, it is
critical to be able to intelligently
manage power. Using an
OS like Linux, for example,
significantly increases startup
time from low power modes.
In contrast, tight integration
between the stack and a real-
time kernel ensures that the
radio can be turned on and off
as quickly as possible.
Running a real-time kernel also
helps simplify power mode
management. Without a kernel,
the typical embedded application
manages tasks using a main
loop. Effectively, the loop polls
a series of tasks. Even if the
device is not doing anything,
the CPU still needs to poll tasks
continuously to see if any of
them need attention.
Because developers never
know which tasks will be
executed during any loop
iteration, it becomes difficult to
determine the optimal power
saving mode in which to place
the system after any particular
task has completed since
each mode offers different
responsiveness. In addition,
as the main loop increases in

33

STM32 Journal

size, managing power becomes
more convoluted.
With a real-time kernel, the
CPU returns to the IDLE task
whenever none of the tasks
need attention. Because no
tasks are currently running, it is
much more straightforward to
manage power. When the IDLE
task is interrupted, the system
can quickly be powered up. This
gives developers the ability to
take the system context into
account when selecting a power
mode and clock speed that
provides the appropriate level
of responsiveness (i.e., how
fast the system can wake to an
active state).
Using the IDLE function to
manage power also simplifies
any migration of applications
between STM32 processors.
For example, tuning an
application based on the STM32
L1 for power may require a
different approach compared
to an STM32 F0 or STM32
F4. By consolidating power
management in a single routine,
developers can be sure to be
able to optimize efficiency
without having to completely
rewrite the application.
Designing your own real-time
kernel is an option. However,

the use of a commercial
real-time kernel like µC/OS-
III from Micriµm provides a
wide range of multitasking
capabilities that make it easier
to add new functionality to
a system without impacting
system reliability. For example,
when a new feature like a
GUI is introduced, it can be
given a low priority. Thus, a
critical system task such as
driving the pump on a blood
pressure monitor is always
executed when it needs to be
and not disrupted because
a USB packet arrived at a
critical moment. In this way,
developers can extend the
UI of a device, as well as its
connectivity options, without
negatively impacting reliability.
A real-time kernel also
simplifies design and power
management as more complex
functions are added to a
system. For example, while
executing a time-intensive
function without a kernel,
developers need to manually
check within the function if
shorter, higher priority tasks
need attention. With µC/OS-
III, multitasking and priority
management is automatically
managed, and developers can
break their system into separate

and distinct pieces without
having to manually manage
how these pieces interact. This
also enables developers to
more accurately measure power
consumption during early
design stages as well as verify
where in their applications
power spikes may be occurring.
Certification is a concern for
many manufacturers of medical
devices as well. Given that it is
the complete system that must
be certified, the Micriµm µC/OS-
III kernel and µC/TCP-IP stack
are provided with source code
and are fully documented so
as to facilitate the certification
process. Using the Micriµm
kernel and stack can simplify
certification compared to an
in-house kernel implementation
that does not have the maturity
and years of industry testing
commercial code offers.
Rather than base a design on a
specialized MCU that can serve
only one price point, the STM32
F0 and STM32 L1, along with
the rest of the STM32 families,
provide a flexible architecture
that can enable developers to
leverage their code and other
IP across an entire product
line. In addition, code- and pin-
compatibility between devices

allows for a nearly seamless
migration between processors.
Designing with the STM32
architecture is also faster
compared to 8- or 16-bit MCUs.
Specifically, 8- and 16-bit MCUs
tend to have a limited tool chain,
especially when the MCU vendor
is the only source for tools.
In contrast, the STM32
architecture is based on the ARM
Cortex-M architecture. As such,
it has the largest ecosystem
available for any MCU. These
tools provide more run-time
information and advanced
debugging capabilities to ensure
system robustness and power
efficiency, as well as verify device
operation to speed certification.
Creating portable medical
devices requires an MCU
architecture that provides
both performance and power
efficiency. With its tightly
integrated architecture, STM32
MCUs offer a single-chip
solution that balances cost
and ultra-low-power operation.
Combined with the powerful
capabilities of production-ready
software such as Micriµm’s µC/
OS-III kernel and µC/TCP-IP
stack, developers can bring
reliable medical products to
market faster.

34

STM32 Journal

Accelerating Time-to-Market
Through the ARM Cortex-M Ecosystem

Before ARM, the MCU market
was fragmented with a multitude
of vendors offering proprietary
architectures and tool chains.
Now, with open architectures
like the Cortex-M, developers
are able to base products on
an entire architecture rather
than have to tie designs to
a specific MCU. The result
is that designs won’t be tied
to an outdated architecture
in just a few years. Rather,
designs will always be current
with the evolving Cortex-M
architecture and extensible
across a wide range of devices
that can leverage the same
application code. For example,
ARM has recently shown its
commitment to keeping the
Cortex-M architecture relevant to
embedded design as well as on
the leading edge of technology
by introducing the Cortex-M0
core. This core extends the
Cortex-M architecture into

traditionally 8- and 16-bit
applications while offering 32-bit
performance.

The STM32 Ecosystem
ST is the MCU industry leader
with the broadest portfolio
of Cortex-M-based devices
from a single company. The
STM32 product line offers an
extraordinary variety of options
with more than 300 devices
all based on the Cortex-M
cores (M0, M3, and M4) to give
developers unparalleled flexibility
in finding the optimal MCU for
their application (see Figure 1).
Part of ST’s strength can be
found in the software and tools
available to developers for
the STM32 architecture. ST
provides a range of evaluation
boards, including the STM32
Discovery Kits, which enable
developers to evaluate each
of the STM32 MCU product
lines. The Discovery kits are

the cheapest and quickest way
to discover the STM32 family
while the evaluation boards
are complete development
platforms providing access to
all peripherals in each STM32
product line and extension

headers to make it easy to
connect a daughterboard
or wrapping board for the
target specific application.
Development tools include
in-circuit debuggers and
eprogrammers, reference

By Reinhard Keil, Director of MCU Tools, ARM Germany GmbH
Shawn Prestridge, Senior Field Applications Engineer, IAR Systems
Laurent Desseignes, Embedded Software Marketing Manager, STMicroelectronics

Co
rte

x-
M

4
Co

rte
x-

M
3

Co
rte

x-
M

0

High-Performance DSP MCUs
168 MHz Cortex-M4
Up to 2-Mbyte Flash

Up to 256 -Kbyte SRAM

STM32 F4

STM32 F2

STM32 F1
STM32 L1

32-bit/DSC applications

16/32-bit applications

8/16-bit applications

Mainstream MCUs
24 to 72 MHz Cortex-M3

16-Kbyte to 1-Mbyte Flash
Up to 96-Kbyte SRAM

High-performance MCUs
120 MHz Cortex-M3

256-Kbyte to1-Mbyte Flash
Up to 128-Kbyte SRAM

Ultra-low-power MCUs
32 MHz Cortex-M3

32-to 384-Kbyte Flash
Up to 48-Kbyte SRAM

Entry-level MCUs
48 MHz Cortex-M0

16- to 128-Kbyte Flash
Up to 20-Kbyte SRAM

STM32 F0 Full-featured 32-bit MCU
Budget Price

Performance Efficiency
Feature-rich
Connectivity

Highest Performance
MCU with DSP and FPU

Figure 1 The STM32 product line offers more than 300 devices all based on the Cortex-M to
give developers unparalleled flexibility in finding the optimal MCU for their application.

35

STM32 Journal

designs, and application notes.
ST also offers a wide variety
of firmware libraries, many of
which are available at no cost,
for implementing motor control,
DMA, timers, interfaces, audio,
LCDs, communications, GUIs,
all standard peripherals, touch
sensing, and in-application
programming, to name a few.
ST also recognizes the benefit of
working with other leaders in the
industry to expand the tools and
software available to developers.
The STM32 architecture is
based on the ARM Cortex-M
architecture which has the most
comprehensive ecosystem of
tools, software, and engineering
resources of any microcontroller
in the world. ST has worked
directly with a wide range of
partners to create offerings
that specifically accelerate the
development of applications
based on the STM32 architecture,
thereby minimizing product
development investment and
speeding time-to-market.
The global ecosystem available for
the STM32 architecture also offers
many cost savings for developers:
〉〉 The open architecture of the

ARM Cortex-M cores gives
developers access to the largest
MCU ecosystem in the world

〉〉 The vast diversity of the
Cortex-M ecosystem ensures
that developers can find
the tools, software, and
middleware they need to
speed the design of nearly any
application

〉〉 With so many OEMs
standardizing on ARM, the
pool of engineers already
experienced with the Cortex-M
architecture is large, making it
easier to find developers. Many
colleges are teaching to the
ARM architecture as well

〉〉 Architectural and tool chain
familiarity reduce the developer
learning curve and speed time-
to-market

The ecosystem for the STM32
consists of a complete range of
tools and software specifically
designed to speed design. The
comprehensive tool chain is
just the beginning. Developers
also have access to the ARM
CMSIS libraries, ST peripheral
drivers, extensive middleware,
and production-ready
application software.

Developer’s Foundation:
The Tool Chain
There are several key
components comprising an
efficient development tool chain:

Leading Embedded
Development Tools

The complete development environment
for ARM® processor-based

microcontroller designs

1-800-348-8051
www.keil.com

C

M

Y

CM

MY

CY

CMY

K

AD329 Keil STM32 Journal(2).pdf 1 23/03/2012 16:39

www.keil.com

36

STM32 Journal

Compiler: Each compiler offers
different strengths. Key factors
to consider are code size and
performance (typically measured
in Coremarks). In addition,
compilers like IAR Embedded
Workbench automatically use
the STM32 architecture to
its best advantage, both in
terms of leveraging silicon and
middleware.
Assembler: Assemblers have
become more of a specialty
tool over the years given the
performance and time-to-market
advantages of coding in C.
Today, if an assembler is used
at all, it will likely be to code an
application’s critical control loop.
Linker: The linker pulls
together all the code required
to create the final application.
It needs to supply program
and data information to the
debugger.
Debugger: The debugger is
the tool most frequently used
by developers. It provides
visibility into systems to
verify program operation and
troubleshoot issues.
IDE: The Integrated
Development Environment
(IDE) defines the workspace
and design flow. Some tool

chains support the option of
replacing the IDE with one of a
developer’s own choice.

Given how much time a
developer will spend with the
debugger, using a debugger
that is well-integrated with
the compiler and middleware
can substantially simplify
troubleshooting. For example, a
debugger that is RTOS-aware,
USB-aware, TCP/IP-aware,
etc. will facilitate faster problem

identification and resolution.
The usefulness of the debugger,
however, is limited by the ability
of the MCU to provide visibility
into its real-time operation.
MCUs without integrated
debugging capabilities will
require developers to rely
upon outdated and intrusive
debugging techniques such as
instrumenting code that can
interfere materially with run-time
execution.

The STM32 family of MCUs
utilizes ARM’s Coresight Debug
Technology to provide leading-
edge troubleshooting capabilities
(see Figure 2). For example, with
streaming trace, developers can
capture trace data limited only
by the size of a PC’s hard drive.
This enables full code coverage
testing, timing analysis, and
performance profiling.
Because Coresight is
implemented in hardware, it

Cortex-M Processor

Run Control

Breakpoint
Unit

Memory
Access Unit

Debug
Interface

Cortex Debug 10-pin or
ARM JTAG 20-pin Connector

JTAG or Serial Wire Debug

Serial Wire Viewer

Cortex-M
CPU Core

ETM Instruction Trace
(optional)

ITM Instrumentation
Trace

DWT Data Watchpoint &
Trace Unit

Cortex Debug + ETM
20-pin Connector (optional)

Trace (ETM, ITM, DWT) not available on Cortex-M0

CPU & Interrupt Events

Trace Point
Interface

4-pin Trace

Figure 2 The STM32 family of MCUs utilizes ARM’s Coresight Debug Technology to provide leading-edge troubleshooting
capabilities including streaming trace, full code coverage testing, timing analysis, and performance profiling.

37

STM32 Journal

imposes no software overhead
on the CPU and requires no
external emulation hardware.
In addition, breakpoints can be
set and variable values changed
while the system is running.
Extensive trace records
capture the program counter
and read/write accesses while
noting time delays and lost
cycles. Statistical information
about exceptions, interrupts,
and events is also collected.
Signals the MCU is processing
can be monitored graphically,
and Coresight provides
instrumented trace capabilities
enabling developers to write
data to specific memory
locations at run-time.

With proprietary architectures,
typically only one or two debug
platforms are available. With
STM32 MCUs, developers can
chose from more than a dozen
vendors. In addition, the options
include low-end tools for those
with simple applications and
tight budgets as well as high-end
tools that provide sophisticated
capabilities for accelerating
development and simplifying
verification and certification
processes.
For example, IAR Systems offers
its new I-jet in-circuit debugging
probe for use with the STM32
architecture (see Figure 3). It
offers seamless integration with

IAR Embedded Workbench and
provides a wide range of real-
time debugging capabilities. The
I-jet is also capable of measuring
target power consumption with
~200 µA resolution at 200 kHz.
This enables developers to
debug applications in terms of
power to fine-tune performance
while achieving the highest
power efficiency.

CMSIS:
Faster Time-to-Market
Part of the value of the STM32
architecture is the Cortex
Microcontroller Software
Interface Standard (CMSIS).
Created by ARM, CMSIS
provides a consistent software
interface that simplifies
software reuse across the
entire STM32 product line of
300+ devices. Each of the

CMSIS libraries reduces the
learning curve behind using
new software and tools to
significantly accelerate design
and lower development costs.
Development tools and
middleware that are CMSIS-
compliant can accelerate
product design in multiple
ways. For example, developers
can create a proof-of-concept
using a high-performance
STM32 MCU with the maximum
memory. This provides full
flexibility during early design
when the core product is still
being defined. Once the design
is proven, CMSIS makes
it easier for designs to be
transparently implemented on a
different, more optimal STM32
MCU, even one based on a
different Cortex-M core.

Figure 3 The I-jet in-circuit debugging probe from IAR Systems offers seamless integration
with IAR Embedded Workbench and provides a wide range of real-time debugging
capabilities, including power debugging with ~200 µA resolution at 200 kHz, for fine-
tuning performance while achieving the highest power efficiency.

CMSIS provides a consistent software
interface that simplifies software reuse across
the entire STM32 product line of 300+ devices.

Each of the CMSIS libraries reduces the
learning curve behind using new software and

tools to significantly accelerate design and
lower development costs.

38

STM32 Journal

CMSIS comprises several parts
(see Figure 4):
〉〉 CMSIS-CORE is a standard API

for all Cortex-M-based devices
and abstracts key functionality

〉〉 CMSIS-RTOS provides an API
for RTOS integration with other
tools and middleware

〉〉 CMSIS-DSP is a collection of
61 digital signal processing
functions that take advantage
of the STM32’s integrated
floating-point and DSP
capabilities. The library is
designed for block processing
to reduce interrupt overhead,
optimize DMA utilization, and
facilitate easy integration with
an RTOS or kernel

〉〉 CMSIS-SVD provides a
System View Description for all
peripherals to abstract actual
peripheral implementations
from application code and
enable peripheral-awareness
for debuggers

With the release of CMSIS 3.0,
ARM is standardizing on an
RTOS API that makes it easier
for middleware components from
different vendors to interoperate.
This will facilitate the propagation
of application-specific
components, such as a TCP/
IP stack, as well as enable the

development tool chain to be
RTOS-aware.
The CMSIS DSP library gives
developers a substantial head
start on the development of
complex algorithms. It also
allows developers to create
complex application code that
can be carried between MCUs

that may not have hardware-
based DSP instructions. This
means that developers can write
code for the STM32 F2 and,
when they compile it for the
STM32 F4, automatically get the
full advantage of the STM32 F4’s
DSP capabilities.

Accelerated Peripheral
Configuration and
Driver Design
One time-consuming part
of product development is
configuring an MCU’s peripherals
and then writing drivers for
the application to utilize them.
To facilitate faster application

U
SE

R
C

M
SI

S
M

C
U

Application Code

CMSIS-DSP
DSP-Library

CMSIS-RTOS
API

Real Time Kernel
(3rd Party)

Core Peripheral Functions

Peripheral Register & Interrupt Vector DefinitionsSIMD
Cortex-M4

Cortex
CPU

SysTick
RTOS Kernel

Timer

NVIC
Nested Vectored

Interrupt Controller

DEBUG
+ Trace

Other
Peripherals

Device Peripheral
Functions

(Silicon Vendor)

Debugger
(3rd Party)

CMSIS-CORE

CMSIS-
SVD

System View
Description (XML)

Peripheral
View

Figure 4 The ARM Cortex Microcontroller Software Interface Standard (CMSIS) provides a consistent software interface that
accelerates product development as well as simplifies software reuse across the entire STM32 product line of 300+ devices.

39

STM32 Journal

design, ST supplies a complete
peripheral library for use with all
STM32 MCUs. Instead of writing
to peripherals directly and locking
code to a particular device,
developers use APIs that abstract
the use of peripherals. This
approach offers several benefits:
〉〉 Faster time-to-market as

developers do not need to
write peripherals drivers or
debug them

〉〉 More reliable code since the
peripheral drivers supplied are
mature and industry-proven

〉〉 Easy migration between
STM32 devices, even ones
based on different Cortex-M
cores. Because the peripherals,
pin-outs, and code are the
same or similar among the
STM32 family, migrating
between devices really is just a
recompile

〉〉 Simple customization as C
source code is provided for all
peripherals

Middleware: Production-
Ready Software Solutions
One of the factors that
substantially accelerates product
development and time-to-
market is the extensive range
of middleware available for the

STM32 architecture, including:
〉〉 Real-time kernels and

operating systems (RTOS)
〉〉 Stacks for all major

communications protocols,
including USB, TCP/IP, and
Bluetooth

〉〉 Advanced design and modeling
tools such as those used for
signal processing

〉〉 Display/GUI solutions
〉〉 Touch sensing
〉〉 Java
The STM32 architecture has
wide industry support, with
ST’s partners providing a
multitude of optimized solutions
for a diversity of applications,
including audio, industrial, and
motor control, to name a few.
For example, developers have
the option of selecting a full-
featured RTOS for applications
needing high reliability or a more
simple kernel for a low-cost
consumer device.
To accelerate design,
however, the development
tool chain needs to be able
to integrate well with
middleware offerings. IAR
Embedded Workbench, for
example, has hooks into the
CSpy software debugger that

enables RTOS vendors to
create drivers that make the
debugger kernel-aware.
Effectively, this approach
maximizes the flow of information
available to developers to
speed problem resolution.
Since the kernel/RTOS is the
primary interface between the
application and middleware such

as communications stacks, it
is important that the debugger
understand how middleware is
being managed by the system.
When a debugger is RTOS-aware
and USB-aware, for example, it
can show developers directly into
frame buffers and display protocol
information in its native format.
Without visibility into the RTOS,
developers would have to
manually collect this information
themselves, introducing
potential error and delay to the
design process. Rather than
having to manually resolve
headers to find the payload, the

debugger can interpret packets
and present them in a format
that allows developers to debug
at the link level. Complete
visibility into the system also
enables developers to more
thoroughly verify program
execution for both ensuring
reliable operation and for
certification processes.

IAR Embedded Workbench
directly supports many
middleware companies
and nearly every hardware
debugger. This enables
developers not only to
seamlessly take advantage
of components from different
companies but also select
best-in-class components
for their applications. IAR
Systems is the world’s oldest
embedded C compiler company
and understands the needs
of developers to be able to
choose the elements of the
ARM ecosystem that are best
for their application.

One of the factors that substantially
accelerates product development and time-to-

market is the extensive range of middleware
available for the STM32 architecture.

40

STM32 Journal

Alternatively, Keil’s MDK-ARM
development system offers a
comprehensive approach to
embedded design by bringing
together an integrated set of
development tools, middleware,
and debug hardware.
MDK-ARM is available in
four offerings, from Lite to
Professional, to match the
varying needs of development
teams (see Figure 5). Some of
its components include:
〉〉 Version 5 of the MDK compiler

has recently been released
and offers best-in-class
performance with full support
for the CMSIS libraries

〉〉 The Keil µVision IDE provides
a wide range of features from
trace view with source code
synchronization and editing to
detailed peripheral debugging
to comprehensive project
management

〉〉 RTX is a full-featured RTOS
supporting multiple scheduling
options, low interrupt latency,
unlimited tasks, and a memory
footprint of less than 5 KB. Full
source code is available

〉〉 Extensive middleware libraries
optimized for the Cortex-M
architecture enable developers
to quickly add support for

CAN, USB Host/Device, TCP/
IP, GUI development, and
file system management
to embedded applications.
Intuitive configuration wizards
simplify the use of middleware

〉〉 The ULINK2 and ULINKpro
debuggers support high-speed
streaming trace for non-
intrusive, real-time visibility into
embedded systems

〉〉 ETM Trace enables full
code coverage testing and
performance analysis

Frameworks and Libraries
Part of the STM32 value
proposition is the availability of
a tremendous amount of off-
the-shelf software. Because
of the huge volumes of ARM
processors shipped, even niche
markets are large enough to
incent third parties to create
specialized tools. Since the
market can support software that
is highly application-specific,
developers have a greater
chance of finding exactly what
they need already available.
Some of the application-specific
libraries offered for the STM32
include audio, motor control, and
industrial control.
Using a library with an STM32
MCU is a straightforward process:

just include it into the application
workspace. Depending upon the
compiler, each function will be
recognized as a keyword and
right-clicking will provide fast
access to the function’s definition
and parameters. Many compilers
and linkers will also automatically
pare out those parts of the library
you are not using to conserve
code space. Many libraries are
provided as binary files created
for a specific STM32 MCU and
tool chain. Others are offered with
source code to enable developers
to customize code.

The availability of so much
production-ready software
accelerates design by enabling
developers to work with
code that provides the base
functionality for their application.
Rather than having to learn
the STM32 architecture from
scratch, developers can let the
tool chain abstract low-level
implementation details.
For example, IAR Embedded
Workbench offers over 3000
example projects. With these,
developers can load a project
onto an evaluation board such

GUI Library

USB Device

File System

TCP/IP Networking Suite

RTX Real-Time Operating System

USB Host

CAN Interface

µVision
Project Manager, Editor & DebuggerARM C/C++ Compiler

MDK-ARM Professional

Figure 5 Keil’s MDK-ARM development system offers a comprehensive approach to
embedded design by bringing together an integrated set of development tools,
middleware, and debug hardware to match the varying needs of development teams.

41

STM32 Journal

as the STM32 F4 evaluation
board and see how a complete
system has been implemented.
These projects provide a working
framework for a wide variety of
applications ranging from simply
blinking an LED to operating
the LCD screen to creating a
lightweight IP stack to implement
a web server. Effectively, these
projects give developers a
template upon which to base their
own design. The startup code
gets developers into their design
immediately, rather than forcing
them to spend time figuring out
how to initialize the MCU.
Combined with the CMSIS
peripheral library, many of the
projects can be transferred
between devices with minimal
reworking. Thus, developers can
take projects built for another
MCU altogether and quickly pull
the core of the application over to
the STM32 device of their choice.

The 80%+ Advantage
With the extensive variety of
software, middleware, and
reference designs available,
developers can expect to
substantially jumpstart their
designs. Depending upon the
application, it is not uncommon
to find a combination of off-the-
shelf software and middleware

within the STM32 ecosystem that
provides 80% or more of the code
required for a design. This enables
developers to focus their design
efforts on the last 20%, leading to
faster time-to-market as well as a
highly differentiated product.
This 80% figure is not unrealistic.
For example, with the availability
of off-the-shelf USB and TCP/
IP stacks, a communications link
truly becomes a component that
can easily be added to a system
rather than a subsystem that has
to be designed and fine-tuned. In
addition, there are many support
resources available to assist
developers in customizing code for
applications that have a specific
need. ST’s support engineers and
Field Application Engineers (FAE),
for example, can provide valuable
insight in overcoming a variety of
design challenges.
With the rise of social
networking, peer support has
become another important
element of an MCU architecture.
The size of the ARM community
is tremendous, and there are
a variety of forums where
engineers can provide peer-to-
peer support. This support can
be product-based, such as the
support communities hosted
by Keil, IAR Systems, and ST

for their own products. Free
software, such as FreeRTOS,
tends to have its own support
network as well.
Many independent forums have
also come into being in the
last decade to assist engineers
by hosting discussions about
silicon manufacturers and their
middleware partners. Engineers
can search for specific MCUs
and tools to hear how useful
others in the industry find them.
They can also post issues and
share solutions.

Software the Way
You Want It
ST embraces the benefits that an
extensive ecosystem offers its
customers. By giving developers
the choice of software developed
by ST, by a commercial third-
party, or through open source,
ST ensures that developers
have the broadest variety of
options available to match their
application needs.
For example, with its
cryptographic library, ST
provides developers with
security capabilities free-of-
charge that have been 100%
optimized for the STM32
architecture. ST also offers a
number of other application-

specific libraries,including
USB, motor control, and
HDMI Consumer Electronics
Communication (CEC).
ST has focused on working with
numerous partners to ensure that
there are many solutions available
for the STM32 architecture. Their
goal is that developers should be
able to find whatever software
and tools they need and, in many
cases, have a choice between
several vendors as well as
between open and commercial
versions. For example,
developers can select from a
range of MP3 codecs ranging
from the open source Helix, ST’s
codec, and commercial codecs
with extensions including mixers,
equalization, etc. This allows
developers to determine for
themselves the balance between
cost, support, efficiency, and
time-to-market.
The STM32 family of 32-bit
MCUs offers developers the
most extensive and complete
portfolio of Cortex-M-based
devices. Combined with the
comprehensive ecosystem
around the STM32 architecture,
developers are able to simplify
development while bringing
products to market more quickly
and at the lowest cost.

42

STM32 Journal

Introducing a Graphical User Interface
to Your Embedded Application

Smart phones and similar
devices have redefined the way
we interact with technology and
created a new set of consumer
expectations as to how a
Graphical User Interface (GUI)
should appear. The complex
layout of Windows that was
thought to define how a GUI
should be has given way to
streamlined interfaces that can
give users access to all of a
system’s functionality on the
smaller displays often used with
handheld devices.
Manufacturers have recognized
that touch-based GUIs can
bring value to a wide range of
embedded applications beyond
consumer electronics, including
industrial automation, appliances,
meters, HVAC, security, access
control, military, automotive,
and infotainment devices. For
example, traditional push-button
interfaces have mechanical
parts which can fail. Moving to a
capacitive touch sensing display

enables not only a more robust
interface but one that offers more
flexibility and extensibility.

32-bit Processing
Adding a GUI to a system,
however, is not like adding a
few more buttons or controls to
a device’s front panel. With the
nearly ubiquitous availability of
touchscreens in mobile handsets,
consumers have come to expect
electronic devices of all types to
have a sophisticated user interface
utilizing 3D objects, perceived
depth, animated transitions,
textures, and complex background
lighting. To create an intuitive
interface that adds value as well
as flair to an application, GUIs also
need to support gestures such
as tap, drag, fling, and slide that
consumers are quickly learning
to consider as a natural aspect of
any touch-based interface.
Applications based on 8- and
16-bit processors simply don’t
have the horsepower to handle

even simple graphics. The
availability of high-performance
MCUs like the STM32 family
that can provide complete GUI
functionality with capacitive
touch sensing on top of the
primary application has been
a key enabling factor in the
proliferation of advanced user
interfaces. For example, the
STM32-F0 provides 32-bit
processing at 8- and 16-bit
pricing. For more graphics-
intensive applications, the
STM32-F2 and STM32-F4
provide sufficient Flash to store
large graphic images. With
devices up to 168 MHz/210
DMIPs, the STM32 family is
also fast enough to provide the
responsiveness consumers are
used to from GUI-based devices.
However, as the cost of
hardware has dropped, software
complexity has continued to
increase. In fact, application
software has become the leading
development cost in embedded

systems, both in terms of
money and time-to-market.
To maintain their competitive
edge, companies need to be
able to introduce complex
GUI functionality while tightly
controlling software development
cost. Achieving this goal requires
access to a GUI framework,
the ability to define the look
and feel in Java rather than C,
rapid prototyping capabilities
to enable consumers to provide
feedback while target hardware
is still being designed, and tools
optimized for the tight memory
and processing constraints of the
typical embedded application.

GUI Framework
There are two primary phases
to designing a GUI. The first is
the creation of the underlying
software code that provides
basic UI functionality. Once this
GUI framework is in place, the
look-and-feel of the GUI must be
designed. To keep system cost

By Gérard Bouvet, Marketing and Sales Manager, GeeseWare
Dominique Jugnon, Microcontrollers Development Tools Manager, STMicroelectronics

43

STM32 Journal

down, developers must minimize
the expense for both of these
processes as well as eliminate
any unnecessary design delays.
In the past, UIs for embedded
systems were designed
specifically for the hardware on
which they were going to be
run. With increasing pressure to
shorten product design cycles, IP

reuse has become an important
consideration in UI design.
Ideally, developers need to be
able to carry a UI across different
products using MCUs that may
be from different families as well.
To achieve this, GUI application
code is abstracted above
the hardware. A Hardware
Abstraction Layer (HAL) handles
specific low-level details such
as how graphical data is stored
in memory and transferred to
the display (see Figure 1). By
interacting with the HAL using
APIs, the GUI application code
becomes a framework that can
be ported across an MCU family
with minimal rewriting required.
Creating an extensible GUI
framework is an involved
process. The HAL enables
developers to build the
framework using a language
other than assembly, leading to
faster code development and
greater reusability. Designing the
framework using C, however,
can still require substantial
development resources.
Ideally, rather than design
a framework from scratch,
developers can use off-the-shelf
software to minimize development
investment. With the right tools,
the GUI design cycle can be

shortened from months to weeks.
GWStudio™ from GeeseWare,
for example, is a Java Framework
with a wide array of preexisting
GUI libraries providing a complete
human-machine interface (HMI)
development environment. Its Java
engine based on IS2T MicroEJ®
technology is specifically optimized
for embedded applications that
have limited memory, constrained
peripherals, restricted network
connectivity, and low power
consumption requirements.
Java brings many advantages to
GUI-based design compared to
working in C. Java was designed
to facilitate GUI creation with an
emphasis on reuse. In addition, its
flexibility ensures a simple revision
process that enables developers
to quickly implement changes
to existing designs. With the
availability of Java for embedded
applications, developers can
leverage the benefits of Java in
many applications:
〉〉 Improved code portability

and reuse
〉〉 Accelerated development up

to 3-5 times faster than
working in C

〉〉 Equivalent performance to
C-based designs; i.e., less
than 1 ms responsiveness for
machine-to-machine (M2M)

processes (i.e., Ethernet) or
touchscreen latency

〉〉 Greater functionality in a
smaller footprint

〉〉 Higher reliability and
robustness by eliminating
manual management of
memory and exceptions

〉〉 Operating system
independence

〉〉 Large development community
Note that even though the GUI is
written in Java, the main application
can be based on C. This enables
developers to introduce a GUI to an
existing design without having to
rewrite the application.
Even with the framework in
place, however, only half the job
is done. Now the look and feel of
the GUI needs to be designed.

Intuitive Look and Feel
Developing an effective GUI can
be one of the most challenging
aspects of system design. GUI
design involves much more
than simply arranging icons on
a screen. To be intuitive, a user
interface has to anticipate how a
variety of different types of people
are going to use the device.
However, it can be very difficult
to know how an end-customer
is going to use a device from

Java Application

Java Class/API

Wrapper C <–> Java

API C

Driver C

External
Port

Figure 1 Abstracting the hardware through a
Hardware Abstraction Layer (HAL)
frees the GUI framework from
handling specific low-level details,
leading to faster code development
and greater reusability.

44

STM32 Journal

a developer’s isolated position
behind his or her lab bench.
For example, while it may be
logical to a developer to group
functions based on what part of
the system they impact, users
will interact with devices based
on what they want it to do. If the
function a person wants to use
most frequently is buried under
a series of icons, the overall
experience will be frustrating. The
UI has become the core factor
determining the user experience.
In today’s market where
consumers have become quite
sophisticated, a poorly designed
GUI can mean failure for a product
regardless of its other qualities.
The reality is that developers
don’t always know how
perspective users will try to
interact with a system. Ideally,
the hardware should not come
between users and how they
want to use the device. In
addition, to keep the interface
from being cluttered and difficult
to navigate, the screen needs
to display as little information
as possible while still displaying
enough data to allow the user
to easily and quickly make
decisions. Tappable UI objects/
elements must also be of a
minimum size but yet also
comfortable to select.

The placement of icons and
ordering of GUI elements is, at
least at first, a fairly arbitrary
process. However, a slider may
end up being in an inconvenient
location or be improperly sized
for reasons that couldn’t be
predicted during initial design
stages. This won’t be clear until
users are actually given a chance
to use the interface.
Designing an effective GUI
involves many such intangible
considerations that require direct
feedback. With limited screen real
estate, the UI must be selective
and display only content that is
relevant to the choices a user
is currently considering. The
application’s main function should
be accessible quickly upon start-
up and always simple to return to.
The final test for an intuitive GUI
is that it must be obvious to users
how to use it efficiently without a
steep learning curve or more than
a few minutes of training.
It may take extensive testing
with users for developers to
understand how the GUI should
be laid out. This likely won’t
happen after bringing in just a
single focus group but rather
will involve many rounds that
iteratively improve the ease-of-
use of the interface. The design
schedule needs to take into

www.geeseware.com

45

STM32 Journal

consideration that the GUI may
need to be redesigned several
times. The sooner accurate user
feedback can be incorporated
into the GUI design, the more
confidence developers can
have that major changes will
not be required after significant
engineering resources have
been invested in implementing
the design.

GUI Testing
The iterative aspect of GUI design
is an important consideration when
selecting a GUI toolset. The speed
and ease with which developers
can modify an existing GUI will
determine how many design
iterations the schedule will allow
and, consequently, how well the GUI
will capture actual user behaviors.
Any testing process needs to
enable stakeholders and end-
users to provide timely input
into GUI design, preferably
as early in the design cycle
as possible. This means that
developers need access to rapid
prototyping capabilities before
target hardware is available. The
testing process should facilitate
the capture of user behaviors
and generation of use cases.
To achieve this, GUI tools must
accelerate design to shorten the
time between test iterations.

Traditionally, developers have
created simulated environments
for users to test. Often these
“wireframe” simulators are
independent tools that allow
developers to put together a
GUI but not necessarily one that
accurately reflects how the final
product will look or operate. For
example, because the simulator
is running on a high-speed
PC, screen updates can be
near instantaneous. Unless the
simulator is able to emulate the
MCU that will be used in the actual
product, developers will be unable
to verify whether the system is
responsive enough to satisfy users.
In fact, feedback from such testing
may actually mislead developers
and result in launch delays.
To ensure that the simulator
matches how the interface will
operate in production hardware
as accurately as possible, the
simulator needs to emulate the
operation of the target MCU.
Developing an embedded GUI
on a PC capable of accurate
emulation offers several benefits
to developers (see Figure 2). In
addition to speeding testing by
eliminating the need to download
new firmware to a target, the
simulator provides several
analysis capabilities to facilitate
optimization and debugging:

〉〉 Static and run-time analysis of
timing and memory footprint

〉〉 Functional code coverage
〉〉 Task profiling and scheduling
Ideally, testers need to have
as realistic an experience as
possible. This means working
on a small screen the same size
as the one that will be used for
production. When running on a
PC, the user may need to use
a mouse rather than be able to
touch the device screen. Even if
a touchscreen is available, it is
likely the wrong size or a monitor
that the user cannot hold in his
or her hand.

To enable realistic testing,
GeeseWare offers its GWPack™
development system. The
GWPack™ includes a standalone
and small form factor board
based on either the STM32-F2
or STM32-F4 that is prequalified
and production-ready. With a 4.3”
resistive or capacitive touchscreen,
10 ms response time, and access
in Java to all of the STM32
architectures peripherals and
interfaces of the pack, the GWPack
gives developers a fully operational
Java platform upon which to carry
applications from proof-of-concept
to production faster than has been
possible before.

Figure 2 GUI design tools like the IS2T MicroEJ® simulator that is part of GWPack™ from
GeeseWare emulate the target MCU to ensure consumer testing matches the
operation of the production GUI as closely as possible.

46

STM32 Journal

A complete framework is
provided as part of GWPack™
that allows developers to dive
immediately into interface
development rather than writing
low-level drivers and managing
system resources to develop
the Board Support Package
(BSP). The IS2T MicroEJ®
simulator for GeeseWare
GWPack further allows
developers to simulate their
designs on a PC while emulating
the operation of an STM32 MCU.
Key features include:
〉〉 Built-in display tree and events

management
〉〉 Window and clickable area

definition and management
〉〉 Support for single and two-

finger gestures
〉〉 Driving of low-level events to

closest tree nodes
〉〉 Sub-level display and event

management at the node level
〉〉 Fully customizable
〉〉 Support for TCP/IP, UDP, and

HTTP via the Java framework
〉〉 The ability to reference all

STM32 peripherals directly
in Java

Because events are object
dependent, developers can easily

define—and redefine—interface
operation, thus accelerating the
ability to implement feedback
into designs.
With the GWPack™, developers
can begin GUI development
immediately with a low initial
investment. The standalone board
is also available in preproduction
volumes to enable manufacturers
to quickly mock up a large
number of systems that can be
put out into the field to capture
customer feedback while target
hardware is still be defined and
built. Finally, for applications with
volumes under 10,000 production
units, the board is a cost-
effective, off-the-shelf alternative
to designing your own.
For volume applications,
GWPack™ enables
manufacturers to complete a
proof-of-design before investing
in implementing a design in
hardware and software. This
ability to design the GUI in parallel
with hardware can substantially
reduce time-to-market.

Critical Design
Constraints
Applications like industrial control,
metering, home automation,
medical, and smart energy don’t
have the memory or processing

capabilities of smart phones. As
a consequence, they need a GUI
that is specifically designed to
minimize processing requirements
and memory footprint. For
example, to implement a GUI in
an embedded Linux environment
can be quite expensive: 32 MB
RAM + 8 MB Flash for the Linux
OS plus graphics libraries push
Flash requirements up to 50-60
MB, adding on the order of $100
to system cost.
The framework supplied with
GWPack™ keeps system
memory requirements under
tight control: a full GUI can
fit in just 128 KB RAM and
1 MB Flash. In addition, the
framework does not require
a real-time operating system
(RTOS) or kernel to operate. For
applications with more intensive
graphical requirements, more
Flash may be required.
The STM32 architecture, with
its 32-bit bus, DSP and FPU
capabilities, and multi-layer bus
fabric supporting simultaneous
data transfers provides more
than enough processing capacity
to handle the GUI, application,
drivers, touchscreen, and
communication ports all with
a single chip. With its broad
portfolio of MCUs based on the
ARM Cortex-M0, M3, and M4

cores, the STM32 architecture
enables developers to select
a processor with the optimal
blend of performance, memory,
and peripherals for their
application. ST also provides a
variety of tools to accelerate the
development of general-purpose
Java-based systems with the ST
Evaluation Kit.
Touch-based GUIs can bring
substantial value to a wide range
of applications by bringing the
look and feel of products up to
date while also by capturing more
value through the user interface.
In addition, they can improve
system robustness by eliminating
mechanical components while
increasing device flexibility
to modify the UI over time to
introduce new features without
redesigning the enclosure.
With the STM32 family of MCUs
and GUI design tools such
as those from GeeseWare,
manufacturers are able to
cost-effectively introduce
next-generation GUIs to new
designs as well as to legacy
products built on 8-, 16-, and
32-bit MCUs. With the ability to
design a fully-functional system
in weeks instead of months,
developers can accelerate GUI
design to enable a dramatic
reduction in time-to-market.

www.st.com/internet/evalboard/product/252535.jsp
www.st.com/internet/evalboard/product/252535.jsp

