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When I got my first paycheck as 
an engineer nearly three decades 
ago, coding and layout weren’t 
exactly social activities. While 
there was a certain amount of 
team collaboration to decide what 
I would work on, the majority of 
what I did was by myself. When I 
decided to shed the ten pounds 
I had gained as a freshman, it 
was a similar story. I never found 
someone willing to go consistently 
to the gym with me, so I pressed 
those weights alone as well.
It’s quite a different world 
today. Take at look at the Nike+ 
FuelBand on the cover of this 
issue’s STM32 Journal. Worn on 
your wrist, it records your every 
activity, not just when you’re on 
the treadmill. 
What makes the FuelBand such 
a ground-breaking product is 
how it brings people together. 
It doesn’t matter whether you 
work out at 2am or are in a 
strange city on travel, with 
this next-generation exercise 
monitor, you are never alone. 
Connected to your phone via 
Bluetooth, you can be in touch 

with exercise buddies all around 
the world through the Nike+ 
online community.
The Nike+ FuelBand is quite 
a feat of engineering. To 
differentiate between simple 
gestures and active motions 
requires complex signal 
processing capabilities. The 
device must also be constantly 
on since even you don’t know 
when you might jump into action. 
120 LEDs comprise the display 
and “Fuel” indicator, and the 
device can operate for up to four 
full days without recharging. It 
also weighs less than one ounce, 
including the batteries. Now 
that’s an efficient design.
At the heart of the FuelBand is 
ST’s ultra-low power STM32 L1 
microcontroller. In addition to 
providing the 32-bit performance 
and processing capacity required 
for advanced signal processing, 
the STM32 architecture offers the 
real-time responsiveness, power 
efficiency, and highly integrated 
peripherals and memory required 
for even the most demanding 
embedded applications.

With innovations like FuelBand 
and Nike+ technology, Nike has 
leveraged social networking to 
change the way we live together. 
Exercise, as a result, is no longer 
a solo endeavor. 
Neither, it turns out, is 
engineering. The network 
supporting the STM32 
architecture enables a whole new 
level of collaboration. Design 
tools from companies like Keil, 
IAR Systems, and Micriµm are 
like having a team of experts 
sitting right next you. Need 
to extend a design by adding 
audio or a capacitive touch GUI-
based interface? Just call upon 
partners like DSP Concepts and 
GeeseWare. And with the STM32 
architecture based on the ARM 
Cortex-M0, M3, and M4 cores, 
you have access to a global 
ecosystem second to none.  
You can even ask questions of 
your fellow engineers at 2am 
or share your own hard-won 
experience through forums, 
blogs, and tweets.
It truly is a different world we live, 
play, exercise, and work in. 
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Bringing 32-bit Performance  
to 8- and 16-bit Applications

Today’s embedded applications 
are being called upon to 
provide an increasing number 
of capabilities. More and more 
devices need to be connected, 
require greater precision, must 
offer a graphics-based interface 
with touch capabilities, utilize 
sophisticated signal processing, 
and support multimedia playback. 
In the past, developers were 
compelled by cost constraints 
to base their designs on 8- and 
16-bit architectures that limited 
performance. Now, with the 
availability of next-generation 
MCUs like the STM32 F0 that 
provide 32-bit performance 
at 8-bit budget pricing, OEMs 
can bring substantial value to 
end-users without having to 
compromise functionality. In 
addition, powerful development 
tools like Keil’s MDK-ARM and 
IAR Embedded Workbench 
enable developers new to 32-
bit programming to immediately 

exploit the full capabilities of the 
STM32 F0 architecture.

The 32-bit Advantage
There are several ways in which 
the STM32 F0 lowers product 
cost compared to 8- and 16-bit-
based designs. Specifically, 
because these MCUs tend to be 
based on legacy architectures, 
they have many limitations that 
slow development by forcing 
designers to work around the 
architecture, so to speak. For 
example, to complete a 16 x 16 
multiplication for a processing 
algorithm, a 16-bit CPU requires 
four multiplies and several 
additions, depending upon the 
implementation. An 8-bit CPU 
would require significantly more 
cycles. With the STM32 F0, this 
takes a single instruction.
The result is code that makes 
better utilization of MCU 
resources, leading to faster 
operation, more performance per 

MHz, higher code density, and 
greater power efficiency. Since 
each instruction does more per 
clock cycle, applications can be 
written using less code. In addition 
to accelerating development, 
shorter code is easier to debug as 
well. Together, all of these benefits 
lead to lower system cost.
Cost, however, is only one of 
the numerous advantages the 
STM32 F0 has over 8- and 16-
bit architectures. The STM32 
F0 is a full embedded MCU 
built using the same STM32 
DNA that the rest of the STM32 
family has, including excellent 
real-time performance, DMA, 
high-resolution ADC and DAC 
peripherals, motor control 
timers, and connectivity 
interfaces. These integrated 
capabilities bring tremendous 
efficiency to cost-sensitive 
designs in a way that limited 
8- and 16-bit MCU architectures 
cannot (see Figure 1).

For example, the availability of 
a 32-bit bus not only speeds 
data transfers and increases 
computing performance, it 
improves system reliability. 
Consider the challenge of reading 
a 12-bit DAC using an 8-bit bus 
where the CPU has to read the 
DAC twice to capture the entire 
sample. If an interrupt occurs 
between these reads, the DAC 
data may be overwritten by the 
next sample before the interrupt 
is completed and the second 
read can be executed. To prevent 
this, developers have to manually 
disable interrupts for every 
such “atomic” operation in an 
application. If even one instance 
is missed, this creates a potential 
for an intermittent error that will 
be extremely difficult to resolve.

DMA: Moving Data 
Efficiently
The STM32 F0 is a modern 
architecture integrating the 

By  Reinhard Keil, Director of MCU Tools, ARM Germany GmbH 
Shawn Prestridge, Senior Field Applications Engineer, IAR Systems 
Sean Newton, Field Applications Engineering Manager, STMicroelectronics
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latest in processing, power, 
and debugging technology. For 
example, multiple low power 
modes extend greater control 
over power consumption to 
achieve longer operating life for 
battery-operated and portable 
devices. In addition, the STM32 
F0 offers advanced features, 
including full Direct Memory 
Access (DMA) and the ability to 
shut down the ADC between 
samples to further increase 
performance while lowering 
power consumption. 

In general, 8-bit MCUs don’t 
have the powerful peripherals 
that higher performance MCUs 
tend to have. For example, 
DMA has become an essential 
peripheral for applications that 
need to move a great deal 
of data, whether as part of a 
processing algorithm, receiving 
data from an interface, playing 
back audio, or transferring 
graphics to the display. In a 
traditional 8-bit architecture, 
each word of data has to be 
moved by the CPU. In addition, 

pointers need to be updated 
and a loop managed. Thus, 
every 8-bits of data takes 
several cycles of CPU time  
to move.
With the DMA in the STM32 
F0, an entire block of data can 
be moved without involving 
the CPU. After the program 
configures the transfer, the 
DMA manages moving the data 
in the background. In fact, the 
CPU can drop into a low power 
sleep mode while it waits for 
the transfer to complete. As 

a result, data transfers do not 
consume unnecessary CPU 
cycles and require less power to 
complete than for 8- and 16-bit 
architectures.
The availability of a DMA 
controller can also greatly 
simplify and accelerate product 
development. Consider reading 
data off of a high-speed data 
interface such as I2C. Because 
of the load on the CPU, 8-bit 
developers have to work around 
the MCU’s architecture, using 
many interrupts to utilize the time 
between data reads. With the 
STM32 F0, the CPU operates 
independently of the interface, 
allowing developers to program 
the CPU for other tasks without 
having to worry about missing an 
interrupt or losing data. 
Because the STM32 architecture 
uses an internal bus matrix, the 
DMA can be used in conjunction 
with each of the different on-
chip memories as well as many 
of the peripherals. For example, 
the DMA can be configured to 
sample the ADC regularly over 
a period of time: a timer triggers 
the DMA to read the ADC and 
store the result in memory 
without involving the CPU. 
Once the operation is complete, 
the ADC shuts down until the 

Figure 1  The STM32 F0 is a full embedded MCU built using the same STM32 DNA that the rest of the STM32 family has and offers 
tremendous efficiency to cost-sensitive designs in a way that limited 8- and 16-bit MCU architectures cannot.
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next sample time. In fact, the 
bus matrix combined with a 
5-channel DMA enables the 
STM32 F0 to support execution 
of code from Flash in parallel 
with other memory-memory, 
peripheral-memory, or memory-
peripheral DMA transfers.
There are many tools to 
assist developers in taking 
advantage of the STM32 F0’s 
DMA capabilities without 
requiring them to become 
DMA experts. The ARM DSP 
Cortex Microcontroller Software 
Interface Standard (CMSIS) 
library, for example, provides 
signal processing functionality 
that has been optimized for 
the STM32 F0 and takes full 
advantage of the DMA.
An intelligent compiler can 
also help developers exploit 
DMA technology to its fullest 
advantage. IAR Embedded 
Workbench, for example, offers 
a feature that will automatically 
rearrange program data to 
maximize the use of the DMA. 
This enables developers to 
achieve high efficiency without 
having to put much forethought 
into how to layout the data 
space. The compiler achieves 
this by analyzing how data 
is used by the application. 

Consider a program that 
copies two different data 
structures using DMA. Each 
copy operation requires a 
separate DMA operation. 
However, after the compiler 
collocates the data structures 
in memory, they can be copied 
with a single DMA transfer.
Note that each MCU may use 
the DMA in a slightly different 
manner. Keil’s MDK-ARM, 
for example, abstracts how 
the DMA is used from the 
application through an API 
that prevents code from being 
tied to a particular processor. 
This enables developers to 
migrate applications to other 
STM32 devices and know that 
code utilizing the DMA will still 
perform optimally.

Writing 32-bit Code
Moving from 8-bit to 32-bit 
assembly is not trivial, given 
the vastly different instructions 
32-bit architectures offer; i.e., 
single-instruction, multiple data 
(SIMD) instructions work on 
multiple data to vastly accelerate 
processing. Even moving 
between 16-bit architectures 
is challenging given that the 
peripherals can differ and impact 
how application code is written.

www.iar.com
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The STM32 F0 architecture 
facilitates a smooth migration to 
32-bits. The ability to develop 
in embedded C reduces the 
learning curve of moving to 
a new architecture. In many 
cases, engineers are already 
familiar with the ARM Cortex-M 

architecture. Developers can 
further ease migration by using 
a tool chain they are already 
familiar with, such as IAR 
Embedded Workbench and Keil's 
MDK-ARM. Finally, developing 
for the STM32 F0 is simplified 
through the use of the ARM 

CMSIS libraries that abstract 
much of the underlying hardware 
from the application.
Moving to the STM32 F0 will 
result in a substantial reduction 
in code size because of the 
density possible with 32-bit 

instructions, on the order of 
30% (see Figure 2). With its 
32-bit address space, the 
STM32 F0 also eliminates 
addressing and paging 
limitations that complicate 
memory management in 8-bit 
designs. For example, data 

Benchmark 
Application 8-bit Math 8-bit Matrix 8-bit Switch 16-bit Math 16-bit Matrix 16-bit Switch 32-bit Math

Floating-Point 
Math

Matrix 
Multiplication FIR filter

16
-b

it

MSP430 178 86 198 126 90 198 222 1102 136 980

dsPIC 236 420 424 224 552 424 424 2020 464 2256

PIC24 236 420 416 224 552 416 424 2020 464 2256

H8/300H 344 412 444 352 482 478 574 1104 482 1392

MaxQ20 230 252 192 204 328 184 288 1172 398 1478

HCS12 83 188 162 76 262 174 323 2082 219 1917

ATxmega64A1 118 398 338 174 490 350 300 1080 584 1362

ARM7TDMI 636 392 452 636 396 452 620 1832 428 1528

8-
bi

t

8051 233 398 305 452 504 493 909 2190 536 2056

PIC18F242 170 324 208 286 692 282 542 1400 676 2006

ATmega8 134 354 350 198 434 382 342 1088 490 1358

STM32 F0 
Compiler Option Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size Speed Size

Code Size 110 94 68 52 98 120 114 106 68 52 98 120 112 108 640 636 268 84 550 550

Figure 2  The STM32 F0 delivers substantial code size reduction when comparing to other 8/16 architectures. This grid show the code size in bytes for various benchmark 
applications. Source: Benchmark applications and results for 8/16-bit: TI MSP430 Competitive Benchmarking (www.ti.com/lit/an/slaa205c/slaa205c.pdf). STM32 F0 
code generated with MDK V4.23, MicroLib, and compiler optimization for execution speed or code size.
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sets can be larger than a single 
page and there are no longer 
“far” addressing penalties. 
The use of object-oriented 
constructs, as is common with 
modern programming and 
modeling tools, can also be 
implemented without disruptive 
fragmentation.
Without question, the best 
compiler is the human brain. 
Given enough time, a person 
can create a highly optimized 
program that no compiler can 
beat. Programming in assembly 
can also be more efficient than a 
C version of the same program. 
Time, however, is one of the 
resources of which developers 
don’t have a surplus. In addition, 
hand-written code can be 
extremely fragile; if the product 
specs change in a material 
way, many of a programmer’s 
optimizations will need to be 
completely reevaluated.
The reality is that Keil’s MDK-
ARM and IAR Embedded 
Workbench are smart enough 
to make excellent coding 
choices that might take a 
person weeks to evaluate. For 
example, how data is laid out 
impacts performance. There’s 
also the challenge of balancing 
optimization techniques like 

loop unrolling to memory 
footprint. A compiler can make 
these decisions for an entire 
program in just minutes. Each 
of these tools offers numerous 
optimization options it can 
perform automatically for the 
STM32 F0 architecture that are 
significantly different than those 
typical with 8- and 16-bit MCUs. 
These options include data-flow 
optimizations such as common 
sub-expression elimination and 
loop optimizations such as loop 
combining and distribution. 
They also include advanced 
techniques like branch 
speculation and executing code 
out of sequence.
These development tools for 
the STM32 F0 give excellent 
results. Compiler efficiency 
compared to human coding 
has been estimated at 97%. 
Put another way, the cost of 
achieving that last 3% is on the 
order of weeks to months of 
development time. In addition, 
if a major design change 
is required, the compiler 
can complete a new set of 
optimizations with just a simple 
recompile. 
As a modern architecture, the 
STM32 F0 is supported by 
similarly modern tools that 

utilize the latest advancements 
in compiler, debugger, and 
middleware technology to 
reduce development time and 
effort considerably. Being based 
on the Cortex-M architecture, 
the STM32 F0 is backed by a 
larger ecosystem of tools and 
production-ready software than 
any other MCU architecture on 
the market. In addition, for many 
applications where the code 
base is small, the tools may be 
effectively free. For example, 
both IAR Embedded Workbench 
and Keil’s MDK-ARM are 
free when used for programs 
under 32 KB, thus enabling 
32-bit design with a low initial 
investment.

Advanced Debugging
While the ability to design 
demanding applications quickly 
is important, developers need 
debugging capabilities that 
can abstract the complexity of 
applications while still providing 
full visibility and control during 
run-time operation. In addition, 
many embedded markets, 
including medical and industrial, 
require that application software 
be certified as well.
The integrated debug 
capabilities of the STM32 
F0 provide many advanced 

capabilities that offer a superior 
debug experience compared 
to old-fashioned 8- and 16-bit 
architectures. For example, the 
STM32 F0 architecture features 
ARM’s Coresight technology 
to help developers analyze, 
optimize, and verify program 
execution with minimal effort 
and cost. 
Coresight represents the 
latest in advanced debugging 
technology. Traditional MCUs 
offer only limited run/stop debug 
capabilities. To achieve greater 
visibility, an in-circuit emulator 
on the order of $1000s may be 
required, and a different pod will 
be required for each MCU in use. 
A few of the benefits Coresight 
provides which other MCU 
architectures do not include 
on-the-fly read/write access 
and trace capabilities at the 
instruction, data, and application 
level. As implemented in the 
STM32 F0, Coresight also 
supports up to 4 hardware 
breakpoints and 2 watchpoints 
without requiring the use of 
intrusive monitoring techniques 
that can skew performance.
Developers also have a choice 
of many low-cost debug 
adapters for the STM32 F0. For 
example, the STLink in-circuit 
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debugger and programmer, 
which links the STM32 F0 
target board to a PC via USB, 
is $25. For more advanced 
debugging, IAR Systems has the 
I-Jet debugger while Keil offers 
developers its ULINK2 and 
ULINKpro debuggers.
These debuggers offer 
powerful capabilities that are 
often not available for 8- and 
16-bit designs. Keil MDK-
ARM tools, for example, 
enable comprehensive code 
coverage, execution profiling, 
and performance analysis to 
ensure maximum performance 
efficiency. With the I-jet 
debugger, IAR Systems is able 
to offer non-intrusive power 
consumption monitoring at 
the board- and chip-level. 
Such “power debugging” 
enables developers to uncover 
opportunities to utilize and tune 
hardware to achieve the highest 
power efficiency.

STM32 F0 Features
STM32 F0 MCUs have been 
designed with real-time 
operating system (RTOS) and 
kernel support in mind to 
enable much tighter integration 
with RTOSes like Keil’s royalty-
free RTX. In a typical 8- or 
16-bit MCU, for example, the 

RTOS and application share 
the stack, and complex 
nesting problems can arise 
that overflow the stack and 
crash the system. The only 
way to avoid such issues is to 
overprovision the stack. The 
STM32 F0, in contrast, has two 
stacks: one for the application 
and one for the RTOS. This 
prevents applications from 
compromising RTOS integrity. 
In addition, RAM overhead is 
much lower.
Other companies basing MCUs 
on the Cortex-M0 architecture 
integrate only the minimum 
capabilities an MCU requires. 
ST is the only company to offer 
Cortex-M0-based MCUs with:
〉〉  Easy Communication: Using 

the integrated DMA controller, 
the STM32 F0 can support 
continuous I2C at a rate of 1 
Mbps without bogging down 
the CPU. This data rate isn’t 
possible to achieve on an 8- 
or 16-bit MCU that does not 
support DMA.

〉〉  Advanced Digital and Analog 
Capabilities: The STM32 F0 
integrates a wide range of 
IP to facilitate the design of 
sensing and control systems. 
For example, advanced timers 
enable the accurate output 

of complex AC waveforms. 
On-chip comparators simplify 
the design of sensors. 
The 12-bit, multi-channel 
ADC operating at up to 1 
MSample/s allows for fast 
and precise data acquisition, 
as well as improves system 
responsiveness to external 
events. Advanced timing 
control is enabled using the 
32-bit and 16-bit PWM timers 
with 17 capture/compare I/O 
mapped onto up to 28 pins.

〉〉  Safety Ready: With shrinking 
process technologies and 
larger memories combined 
with frequently changing data, 
bit errors from cosmic rays 
can occur. For systems that 
must meet stringent safety 
compliance standards, the 
STM32 F0 performs real-
time, hardware-based RAM 
parity checking and 16-bit 
CRC verification for Flash to 
ensure the integrity of memory. 
RAM checks are performed 
automatically whenever 
memory is accessed. Flash 
verification is self-managed, 
enabling developers to confirm 
program integrity upon startup 
and when updating firmware 
to verify that no bits have been 
flipped since they were written.

Double Sourcing 
In recent years, the 
industry has seen 
shortages when devices 
are manufactured in a 
single location. To ensure 
its customers will always 
have uninterrupted 
access to product, 
ST employs a double 
sourcing strategy in 
which all STM32 devices 
are manufactured in at 
least two fabs in different 
parts of the world. This 
prevents product supply 
from being vulnerable to 
environmental factors that 
shut down a particular 
production fab. It also 
enables ST to meet any 
unanticipated rise in 
demand more easily by 
shifting production among 
multiple fabs.

〉〉  Reliability: The STM32 F0 
integrates two watchdog 
timers, one of which is a 
windowed watchdog timer. 
These timers, which can 
operate in low power modes 
as well, provide a higher level 
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of reliability not available in 
most 8- and 16-bit MCUs. A 
Clock Security System (CSS) 
enables systems to switch to 
internal RC-based clocking in 
case of external clock failure 
to ensure systems can shut 
down gracefully rather than 
catastrophically.

〉〉  Optimized Communications: 
The STM32 F0 supports the 
HDMI Consumer Electronics 
Communication (CEC) 
protocol. Important for 
devices targeted for consumer 
markets, this peripheral 
enables devices to have smart 
control over multiple HDMI 
lines. For devices needing 

remote control capabilities, 
ST provides a full infrared 
firmware library.

〉〉  Memory: Memory capacity 
ranges from 16 KB to  
128 KB Flash

〉〉  1.8V Ready: The STM32 
F0 can interface directly to 
1.8 to 3.6 V-based devices. 
This eliminates the need 
for additional conditioning 
circuitry 8- and 16-bit  
MCUs require.

〉〉  Capacitive Touch Sensing: 
To add touch to 8- and 16-
bit MCU-based designs, a 
second processor is typically 
required. With the STM32 

F0, developers can easily 
introduce capacitive touch 
sensing to applications, 
with up to 18 keys and 
slider/wheel configurations, 
all with a single chip. In 
addition, touch sensing can 
be implemented with zero 
CPU loading when using the 
charge transfer method. 

Overall, the STM32 F0 provides 
an optimal balance of cost, 
performance, and peripherals 
for embedded applications 
(see Figure 3). Rather than tie 
developers to a proprietary 
architecture with limited tools 
and support, ST offers the 
industry’s widest Cortex-M 
portfolio with more than 300 
compatible devices across the 
entire STM32 family. 
With code-, pin-, and peripheral-
compatibility across the STM32 
family, developers can leverage 
Cortex-M0-based designs to 
M3- and M4-based MCUs 
with unparalleled flexibility. For 
example, applications designed 
using the STM32 F0 are easily 
migrated to the STM32 F2 and 
STM32 F4. With Keil’s MDK-
ARM and IAR Embedded 
Workbench, developers just need 
to change the MCU selection 
and the compiler handles all of 

the details by recompiling the 
code. This enables developers 
to easily migrate to an MCU with 
more performance, memory, 
and peripherals without rewriting 
the application. As a result, 
developers can leverage the 
same application and tool chain 
across an entire product line and 
a variety of MCUs.
Similarly, developers have the 
option of designing code on 
the STM32 F2 or F4 with the 
intention of later downsizing 
to the STM32 F0. This enables 
design to take place on a 
platform with the highest 
performance and memory to 
accelerate proof-of-concept 
design. Once the design has 
settled, developers can optimize 
it for the STM32 F0.
With the STM32 F0, ST offers a 
compelling alternative to 8- and 
16-bit devices. For the same 
price, developers get more 
performance, higher resolution 
peripherals, better tools, 
wider support, accelerated 
development, and faster time-
to-market. To explore how the 
new STM32 F0 can bring the 
benefits of 32-bit technology 
to your designs, the STM32 F0 
Discovery Kit is available now 
for less than $10. 

STM32 F0 Benchmark Positioning
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Figure 3       The STM32 F0 provides an optimal balance of cost, performance, and peripherals for 
embedded applications. 
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Developing High-Quality Audio for 
Consumer Electronics Applications

With the falling cost of 
high-performance MCUs, 
manufacturers are considering 
adding digital audio functionality 
to more and more consumer 
devices and other embedded 
applications. Their goal is to 
support the wide variety of media 
sources users want to access 
such as an iPhone, Internet 
radio, external USB devices, and 
SD cards.
Achieving high-quality sound 
output, however, is non-
trivial. Sound quality depends 
greatly upon the final system 
configuration, making it difficult 
to design even when prototype 
hardware is available. In 
addition, implementing real-
time digital signal processing 
algorithms introduces a 
whole new set of concerns 
for developers used to MCU-
based design. These include 
implementing advanced filters 
and processing algorithms, 

handling fixed-point issues, 
using DSP-like instructions, 
and optimizing complex 
algorithms for speed, MIPS, 
memory, and power. 
In this article, we’ll show how 
developers can leverage MCU-
based digital signal processing 
(DSP) and floating-point unit 
(FPU) capabilities to enable 
real-time audio playback, 
implement enhanced algorithms, 
convert between multiple 
clock domains, manage high-
speed communications without 
impacting audio quality, optimize 
designs to balance quality and 
cost, and manage other system 
tasks such as a graphical 
user interface, all with a single 
microcontroller.

Consumer Audio
Traditionally, introducing audio 
to an embedded application 
requires digital signal-processing 
capabilities beyond the capabilities 

of most MCUs. Even a “simple” 
product like an iPod speaker dock 
requires a significant number of 
advanced audio algorithms to 
achieve full performance:
Spatial enhancement: In 
an iPod docking station, the 
speakers may be only 12-18 
inches apart. To create a more 
spacious, rich sound, spatial 
enhancement is required is 
to compensate for the close 
proximity of the speakers. 
Multi-channel audio: For 
systems supporting more than 
two speakers, the stereo input 
signal requires processing to 
create the additional audio 
channels.
Equalization: Speakers need to 
be equalized to achieve better 
sound quality. If the speakers 
in use change, the equalization 
needs to be adjusted as well. 
Developers can employ a 
variety of equalization methods, 

including graphic and parametric 
equalization. For higher-end 
applications, developers may 
even want to design their own 
equalization algorithms using a 
tool like MATLAB.
Peak limiting: Speakers exhibit 
nonlinearity at louder sound 
levels. By applying a time-varying 
gain and carefully controlling the 
peak levels, the system can play 
louder with a minimum amount 
of distortion.
Boost: When listening to music 
at low volume levels, much 
detail, and therefore depth, can 
be lost. Boosting of the bass and 
certain other frequencies at low 
volume levels using loudness 
compensation or perceptual 
volume-control techniques can 
significantly improve perceived 
sound quality.
Level matching: Level matching 
eliminates the need for users to 
adjust the volume for each song 

By  Paul Beckmann, CEO/CTO, DSP Concepts  
Dragos Davidescu, Chief System Architect, STMicroelectronics 
John Knab, Application Engineer, STMicroelectronics
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when shuffling through a large 
library of albums.
Digital audio has commonly 
been implemented in consumer 
electronics and embedded 
applications using a second 
processor dedicated to this task. 
To meet market cost pressures, 
however, manufacturers need to 
be able to process audio on the 
host CPU.
In general, it is easier to 
implement audio on an MCU 
than it is to implement real-time 
responsiveness and connectivity 
on a DSP. DSPs, while excellent 
at processing audio, don’t have 
the peripherals or interrupt 
responsiveness required for real-
time systems. DSP architectures 
are also typically designed for 
high-end signal processing 
and massive parallelism that 
exceeds the requirements of the 
typical consumer application. In 
addition, DSPs are not designed 
to support communication 
interfaces like USB, SD cards, or 
Wi-Fi, so a DSP-based docking 
station would still require a 
second processor to handle 
connectivity. 
With the introduction of DSP 
capabilities to MCU instruction 
sets, MCUs now have the 
advanced math processing 

capabilities required to handle 
not only basic audio processing 
but the advanced algorithms 
required to improve quality as 
well. In addition, rather than 
requiring developers to hand-
code assembly as is typical for 
DSP-based designs, MCUs offer 
ease-of-use and faster time-to-
market through C programming 
and application libraries. 
MCUs are also specifically 

architected to provide short and 
deterministic interrupt latency as 
well as ultra low-power operation 
for battery-powered applications.

The STM32 MCU + Audio 
Architecture
The STM32 architecture from 
ST has been designed to 
bring 32-bit MCU capabilities 
to a wide range of consumer 
audio applications, including 

multimedia speakers, docking 
stations, and headphones. The 
STM32 F4, based on an ARM 
Cortex-M4 core operating at 
up to 168 MHz, also integrates 
capabilities such as DSP 
instructions and a floating-point 
unit to allow manufacturers 
to produce consumer audio 
applications offering quality 
playback at the lowest cost  
(see Figure 1). 

System

Control
Crypto/hash processor

Power supply
1.2 V regulator
POR/PDR/PVD
Xtal oscillators

32 kHz + 4 ~26 MHz
Internal RC oscillators

32 kHz + 16 MHz
PLL

Clock control
RTC/AWU

SysTick timer

51/82/114/140 I/Os
Cyclic redundancy

check (CRC)

2x watchdogs
(independent and window)

Nested vector
interrupt

controller (NVIC)

MPU

Floating-point unit (FPU)

JTAG/SW debug/ETM

3DES, AES 256
SHA-1, MD5, HMAC

16-channel DMA

Multi-AHB bus matrix

ART Accelerator™

ARM Cortex-M4
168 MHz

STM32 F4

2x 16-bit motor control
PWM

Synchronized AC timer
10x 16-bit timers
2x 32-bit timers

True random number generator (RNG)

Analog

Connectivity

2-channel 2x 12-bit DAC

SDIO
1x USB 2.0 OTG FS

1x USB 2.0 OTG FS/HS
2x CAN 2.0B

3x SPI, 2x I2S, 3x I2C 
Camera interface

Temperature sensor

3x 12-bit ADC
24 channels / 2.4 MSPS

Ethernet MAC 10/100
with IEEE 1588

6x USART
LIN, smartcard, lrDA,

modem control

512 OTP bytes

Up to 192-Kbyte SRAM

80-byte + 4-Kbyte backup SRAM

Up to 1-Mbyte Flash memory

FSMC/SRAM/NOR/NAND/CF/LCD
parallel interface

Figure 1  ST has expanded its STM32 MCUs beyond the base Cortex-M architecture with a variety of integrated peripherals  
to create a wide range of MCUs that optimize performance, memory, and cost for nearly every embedded application.
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The STM32 F4 offers excellent 
audio processing capabilities 
(see Figure 2). With its rich 
peripheral integration, a single 
STM32 F4 can provide a cost-
effective, single-chip solution for 
implementing embedded audio 
that combines performance, 
ease-of-use, connectivity, and 
signal processing to achieve 
quality audio playback. Key 
capabilities of the STM32 F4 
for accelerating audio design, 
enhancing performance, and 
lowering system cost include: 

Digital Signal Processing 
Instructions: With the STM32 
F4, developers have access 
to up to 105 DSP-specific 
instructions. These instructions 
include single-cycle multiply-
and-accumulate (MAC), 
saturated arithmetic, and both 
8- and 16-bit SIMD integer 
operations. Its architecture is 
designed to enable high-quality 
audio in consumer electronics 
and embedded applications in a 
more cost-effective manner than 
is possible with DSPs.

General Purpose MCUs

Discrete DSPs

Cortex-M4

Specialised Audio DSPs

0 5 10 15 20 25 30

Max
Min

DSP application example: MP3 audio playback

MHz required for MP3 decode (smaller is better!)

DSP Concept

Figure 2       With its Cortex-M4 core, the STM32 F4 offers excellent audio processing capabilities 
that exceed the performance of many general-purpose MCUs and discrete DSPs.

www.dspconcepts.com
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Floating-Point Unit: All STM32 
F4 devices also have an 
integrated floating-point unit 
(FPU). While signal-processing 
algorithms can be implemented 
using fixed-point arithmetic, 
this approach adds complexity 
in that underflow and overflow 
need to be manually managed. In 
addition, fixed-point processing 
offers less dynamic range than 
floating-point, which impacts 
many audio functions. With 
the integrated FPU, there is no 
penalty for retaining this precision. 
Code based on floating-point can 
also be substantially faster and 
requires less memory than fixed-
point code.
32-bit Efficiency: The bus 
size of the processor has a 
tremendous impact on both 
performance and power 
efficiency. Even if audio 
samples are streaming at 16 
bits, the system still needs 
32-bits to store intermediate 
computations. A 16-bit MCU 
or DSP, for example, requires 
seven operations (4 multiplies 
and 3 additions) just to complete 
a single 32 x 32 multiplication. 
The STM32 F4 can execute 
a 32-bit MAC (multiply and 
accumulate) with only one 
single-cycle operation.

Multi-Layer Bus Fabric: 
The key to real-time signal 
processing is maintaining 
efficient data flow. In a 
consumer audio device, 
however, the MCU must 
move not only signal data but 
manage program memory, 
communication ports, and other 
system tasks. The complexity 
and real-time nature of audio 
algorithms also requires 
them to be integrated with 
application code to ensure that 

neither core application tasks 
nor audio playback compromise 
each other. 
The STM32 architecture is 
designed to minimize this 
problem so that developers 
do not need to spend time 
resolving potential conflicts. 
This is achieved through the low 
interrupt service overhead of 
STM32 devices combined with 
the multi-layer bus fabric that 
allows multiple DMA transactions 
to occur simultaneously without 

burdening the CPU. Figure 
3 shows the high level of 
parallelism that can be achieved 
through simultaneous transfers 
over a multi-layer fabric: 
〉〉  Program code is executed 

from Flash with data stored in 
SRAM (red)

〉〉  The compressed audio stream 
is received over USB and 
stored in SRAM (green).

〉〉  CPU with DSP and FPU 
functionality accesses the 
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Figure 3  The multi-layer matrix that interconnects STM32 MCUs with peripherals and memory enables simultaneous transfer between multiple 
masters and slaves without requiring involvement from the CPU. This provides STM32 MCUs with a tremendous interconnect 
capacity that eliminates peripheral and memory access bottlenecks for the highest operating performance.
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compressed audio stream for 
decompression and signal 
processing (green)

〉〉  Decompressed MP3 data is 
sent from the CPU to SRAM 
(yellow)

〉〉  Audio data is output to I2S 
through DMA (orange)

〉〉  Graphical icons are transferred 
from Flash to the display 
through DMA (blue)

Communications Interfaces: 
Users want to be able to access 
audio data from different sources 
and over different interfaces. 
With the right mix of interfaces—
including USB (host and device), 
Ethernet for Internet Radio, 
SDIO, and external memory—
developers can create flexible 
devices that support a wide 
range of usage models.
In addition to being able to 
receive data without loading 
the CPU, developers need to 
be able to address the many 
issues related to streaming 
audio, including lost packets and 
lack of feedback controls. For 
example, USB feedback controls 
to prevent under and overflow of 
the audio buffer are not always 
used or well implemented. This 
can result in lost or dropped 
packets that impact audio 

quality. To overcome this 
limitation, developers can utilize 
sample-rate conversion (SRC). 
SRC is also useful for converting 
between audio speeds (i.e., clock 
domains) while maintaining audio 
fidelity, compensating for slight 
mismatches in clock speed, or 
for mixing audio from different 
sources. For applications that 
need SRC, the STM32 F4 
requires only 10% utilization, 
leaving plenty of headroom for 
other signal-processing tasks.
Multiple Clock Sources: 
Consumer audio systems require 
a number of different clock 
domains—including the CPU, 
USB, and I2S—that have fixed 
frequencies and need to be 
accurate as well as free of jitter. 
Trying to use the same clock 
for each of these can impact 
precision. For example, it is 
straightforward to achieve a clean 
clock at 168 MHz for the CPU, 
44.1 KHz for an I2S interface or 
48 MHz for USB but not for all 
three using a single clock source.
The STM32 F4 integrates two 
PLLs for increased clocking 
flexibility. The main PLL is used 
to generate the system clock 
and the second PLL is available 
to generate the accurate clocks 
needed for high-quality audio. 

Complete audio system

STM32 F2
CPU load

STM32 F4
CPU load

Flash
footprint

RAM
footprint

MP3 decoder 17% 6% 23k 12344

MP3 encoder 22.5% 9% 25k 16060

WMA decoder 17.5% 6% 45k 36076

AAC+ v2 decoder 25% 11% 54k 87000

Channel mixer 2.5% 2% 0.6k 16

Parametric Equalizer 16% 12% 2k 300

Loudness Control 4.5% 3.5% 3.25k 632

SRC 22.5% 10% 17.5k 1880

Figure 4  When computing 16- and 32-bit DSP functions, theSTM32 F4 offers a 25–70% 
improvement. As a result, systems can drop into sleep mode faster to conserve 
power or run more algorithms to further improve audio quality.

In addition to being able to receive data 
without loading the CPU, developers need 

to be able to address the many issues 
related to streaming audio, including lost 
packets and lack of feedback controls. 
For example, USB feedback controls to 
prevent under and overflow of the audio 

are not always used or well implemented.
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The ability to source different 
clock domains enables designs 
based on the STM32 architecture 
to maintain a permanent USB 
connection and avoid audio 
synchronization issues.
Integrated Audio Interfaces: 
The STM32 F4 has two full-
duplex I2S standard stereo 
interfaces offering less than 
0.5% sampling frequency error. 
There is also an external clock 
input to the I2S peripheral if 
an external high-quality audio 
PLL is preferred. In addition to 

simplifying design, integrating 
the I2S interfaces reduces 
component count, board size, 
and system cost.
MCU Peripherals: The STM32 
architecture includes all of the 
real-time peripherals required for 
even the most demanding MCU-
based application. 
The combination of the STM32 
F4’s capabilities brings a new 
level of performance to audio 
applications. Performing 
a long 32-bit multiply or 
multiply-accumulate (MAC) 

operation on an STM32 F2, for 
example, takes 3-7 cycles. With 
the STM32 F4, this operation 
is performed in a single cycle. 
When computing 16- and 32-
bit DSP functions, the STM32 
F4 offers a 25-70% (see Figure 
4) improvement. As a result, 
systems can drop into sleep 
mode faster to conserve power 
or run more algorithms to further 
improve audio quality.
In addition to the integrated DSP 
capabilities of the STM32 F4, 
developers have access to the 

CMSIS DSP library to accelerate 
development. The CMSIS 
DSP library includes a large 
number of DSP and floating-
point functions optimized for 
the algorithms commonly used 
in audio applications. This 
library is supplied by ARM for 
processors built around the 
Cortex-M4 processor. DSP 
Concepts is the company that 
wrote the CMSIS DSP library. 
They have leveraged their 
intimate knowledge of the library 
to create the audio blocks that 
make up their signal processing 
design tool, Audio Weaver.

Audio Algorithm Design
Audio Weaver enables 
developers to quickly design 
the audio processing portion 
of their system; i.e., everything 
that goes on between receiving 
an audio signal and outputting 
it. Audio Weaver offers a 
GUI-based development 
environment that enables 
developers to design the signal 
flow for their application by 
selecting processing blocks 
and connecting them using 
a drag-and-drop editor (see 
Figure 5). Each block has hand-
optimized code behind it, and 
the tool automatically creates 
the required data structures. 

Figure 5  Audio Weaver from DSP Concepts offers a GUI-based development environment that 
enables developers to design the signal flow for their application by selecting processing 
blocks and connecting them using a drag-and-drop editor.
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Because complex functions are 
built from base audio functions, 
the final code executes with 
no performance or efficiency 
losses compared to hand-
coding from scratch.
When algorithm code is written 
by hand, each design iteration 
requires substantial time 
investment since the code must 
be optimized and tuned to 
see what its actual impact on 
sound quality and processing 
load are. With Audio Weaver, 
the design cycle is much faster, 
giving developers the ability to 
explore more configurations in 
their efforts to increase sound 
quality while reducing system 
cost. Code is highly optimized 
for MIPS and memory usage, 
supports floating-point 
processors such as the STM32 
F4, offers flexible deployment 
modules, and does not require 
an RTOS to operate. The library 
includes over 150 different 
audio blocks, including third-
party IP.
With tools like Audio Weaver, it 
has become possible to create 
highly tuned audio applications 
without engineers needing 
to have a deep knowledge 
of audio processing. For 
companies new to audio, 

complete reference designs are 
available, with assistance from 
DSP Concepts to tune them 
for the final production system. 
Companies that are comfortable 
with audio processing can 
work with individual audio 
blocks that provide basic 
functionality and build them 
into higher-level processing 

algorithms. Even sophisticated 
companies can accelerate 
design using Audio Weaver as 
it provides a framework with 
core components that not only 
jumpstarts design with highly 
optimized code but provides a 
development environment that 
facilitates fast prototyping and 
tuning. For these companies the 

value-add of Audio Weaver is 
faster time-to-market.

Accelerating Optimization
To speed design, Audio Weaver 
supports cross-platform 
development. The ability to run 
the same algorithms on a PC as 
on the STM32 F4 gives engineers 
a powerful environment in 

which to design and tune the 
software in parallel with hardware 
development. Once target 
hardware is available, the code 
can be retargeted for the STM32 
F4 and final optimizations made, 
resulting in significant time-to-
market savings.
During final optimization, 
developers can profile the 

MIPS and memory required by 
each audio processing stage. 
This enables engineers to 
measure how much a particular 
improvement in sound quality will 
cost in terms of CPU utilization 
to determine the most efficient 
use of processing resources 
when many functions have to 
operate simultaneously. 

Consider the use of different 
order filters to equalize the 
speakers. A lower-order filter, 
for example, may provide a 
frequency response that is 3 dB 
off of the ideal response while a 
higher order filter is off by only 
1 dB. The relative difference 
in CPU utilization between 
these two filters can be used 

When algorithm code is written by hand, each design 
iteration requires substantial time investment since the 

code must be optimized and tuned to see what its actual 
impact on sound quality and processing load are. With Audio 

Weaver, the design cycle is much faster, giving developers 
the ability to explore more configurations in their efforts to 

increase sound quality while reducing system cost.
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to determine where to allocate 
CPU resources to maximize 
sound quality.
At the end of the day, however, 
audio quality is not about 
response graphs but how it 
actually sounds to people. With 
many development systems, 
engineers have to make 
adjustments to code, recompile, 
and download code before they 
can hear a new configuration. 
However, to assess the impact of 
a lower-order filter on quality, for 
example, developers need to be 
able to hear both configurations 
right after each other. 
Audio Weaver solves this 
problem by supporting a 
tuning interface that can 
change filter characteristics 
in real-time. With the ability to 
configure and switch between 
multiple settings with the click 
of a button, developers can 
compare two sets of speaker 
equalizations or different spatial 
processing. Note that the 
tuning interface is seamless 
and transparent, compared to 
instrumenting code that can 
impact quality because of extra 
loading on the CPU.
The ability to tune quickly and 
easily without recompiling can 
substantially shorten the time 

it takes to optimize a system. 
Flexible tuning also simplifies 
the optimization process for 
developers new to audio. 
Note that audio applications are 
not comprised solely of audio 
processing. To accelerate system 
design, DSP Concepts also 
provides an extensive range of 
software functionality beyond its 
extensive audio module library, 
including:
〉〉  Real-time kernel
〉〉  Audio I/O management
〉〉  PC/host control interface
〉〉  Boot loader
〉〉  Update manager
〉〉  Flash file system 

System-level Design
One of the challenges to 
adding audio to embedded 
designs is that while many MCU 
manufacturers offer reference 
designs, audio is typically 
not one of the applications 
supported. 
To address this shortcoming, 
ST has invested significantly in 
creating digital audio resources 
for its customers in order to 
offer complete audio reference 
designs as well as tools that 
enable the design of quality 

audio optimized for the STM32 
architecture. For example, 
ST and its partners offer a 
variety of evaluation boards 
with audio capabilities. ST also 
offers several docking station 
reference designs that provide 
a representative design that 
can be used in a wide range of 
embedded applications.
For Apple Made for iPod (MFI) 
licensees, ST offers the Apple 
iAP application, a complete 
solution based on STM32 F2 and 
STM32 F4 devices to deliver a 
high-quality music experience. 
The Apple iAP application 
support both simple accessory 
and audio streaming accessory 
for iPod, iPhone, and iPad 
devices. Components include:
〉〉  Either the STM322xG-EVAL 

or STM324xG-EVAL board 
to which developers connect 
their Apple Authentication 
Coprocessor (ACP) circuit 

〉〉  Free Apple “iPod Accessory 
Protocol” (iAP) firmware with 
Lingoes for authentication and 
control/information data

〉〉  Free USB Host Library with 
USB Host HID class for control 
and information data

For audio streaming accessories, 
the Apple iAP application also 
supports:
〉〉  Free USB Host Library USB 

Host Audio classes 
〉〉  Remote iPod/iPhone/iPAD 

control
〉〉  Digital audio streaming
〉〉  Music tag extraction
〉〉  Flash card reader capabilities, 

such as using an SD card or 
MMC, that can decode audio 
files from this media. Optimized 
decoders are provided for this 
purpose free of charge

Today’s consumer audio devices 
are complex systems that 
require both high performance 
to support quality playback 
and flexibility to meet rapidly 
changing market expectations. 
With its high performance 
core, efficient multi-layer bus 
fabric enabling simultaneous 
data transactions, and the right 
mix of MCU peripherals and 
connectivity, the STM32 F4 is 
an ideal architecture for many 
embedded and consumer audio 
applications. Developers can 
now design systems offering 
synchronized digital audio 
playback of the highest quality 
using a single MCU. 
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Bringing Floating-Point Performance and 
Precision to Embedded Applications

Hardware-based floating-point 
capabilities have long been 
an option on high-end MPUs 
and DSPs designed to serve 
as computational workhorses. 
Embedded systems based 
on MCUs, however, have 
classically used a fixed-point 
implementation. 
There are many reasons for 
this. The types of simple 
calculations embedded 
systems needed to make 
could be handled sufficiently 
using fixed-point math. The 
resulting code was not only 
well-suited to an MCU’s native 
mathematical capabilities, it 
resulted in faster execution and 
was more memory efficient than 
an equivalent floating-point 
implementation would be. The 
only disadvantage of using 
fixed-point was the tradeoff 
between range and precision, 
which could be tolerated in 
most cases.

Some of today’s embedded 
systems are completely different 
from their early predecessors. 
They operate at high clock 
speeds and need to perform 
more complex calculations than 
ever before. While processing 
and memory efficiency are still 
primary design considerations, 
a more useful range and higher 
precision have become essential 
in many applications. 
For example, to output high 
quality audio, MCUs need 
to support a wide dynamic 
range so that the system 
sounds good at both low and 
high frequencies. Medical 
applications, such as heart-rate 
monitors and glucose meters, 
need to measure more subtle 
signals and quantities. For 
industrial applications, higher 
precision in the MCU enables 
developers to use lower quality 
components in other parts of 
the system, reducing overall 

system cost. And with the 
increasing use of capacitive-
sensing technology, nearly 
every embedded application 
can benefit from detecting user 
inputs with greater accuracy, 
especially on displays with 
limited surface area.

Floating-Point vs  
Fixed-Point
The balanced combination of 
range and precision in a floating-
point number comes from its 
separation of the exponent and 
mantissa. When a number is 
stored in a fixed-point format, 
the position of the exponent is 
assumed and all of the bits are 
reserved for the mantissa (i.e., the 
actual digits used to represent 
the number). The issues that 
arise with fixed-point formats 
are similar to those associated 
with reading an ADC: the 
wider the range of values to be 
represented, the less resolution 

there is at the lower end of the 
range. If very small changes in 
value need to be captured, the 
range must be more narrow. 
Developers, then, must choose 
between range and resolution.
Floating-point addresses these 
issues by dedicating a few bits to 
an exponent to track the decimal 
point. For example, the single-
precision format supported 
by the STM32 F4 uses one bit 
for the sign and 8 bits for the 
exponent, leaving 23+1 bits for 
the mantissa (the normalized 
format used adds an implicit 
bit to the 23 bits stored in the 
floating-point number). As such, 
a single-precision floating-point 
number gives a more useful 
range and precision combination 
compared to 8-, 16-, or even 
32-bit fixed-point numbers 
which either give a wide range 
with greatly reduced precision 
or higher precision with a much 
smaller range.

By  Olivier Ferrand, Application Engineer, STMicroelectronics  
Stephane Rainsard, Application Engineer, STMicroelectronics  
Abdelhamid Ghith, Application Engineer, STMicroelectronics
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The 32-bit single-precision format 
is part of the IEEE 754 Floating-
Point Arithmetic standard. This 
standard represents decades 
of experience and provides a 
common approach for supporting 
floating-point arithmetic that 
unifies processors, coding tools, 
and high-level design tools. 
Specifically, the 754 standard is 
the basis for the floating-point 
data types used in C. In turn, 
these floating-point C formats are 
used in code generated by high-
level modeling/Meta language 
tools like MATLAB and Scilab. 
One of the key benefits of using 
floating-point is that it enables 
developers to make more 
efficient use of C and powerful 
algorithm development tools that 
have previously been reserved 
for DSP- and MPU-based 
design. Generally speaking, 
floating-point numbers are easy 
to manipulate in C. High-level 
tools further accelerate and 
simplify development by enabling 
developers to describe complex 
algorithms in equation form and 
then quickly generate efficient 
C code rather than requiring 
them to hand-code algorithms 
in assembly. In addition, these 
high-level tools offer tremendous 
flexibility in allowing developers 
to rapidly implement changes 

to algorithms without having 
to completely rewrite and re-
optimize algorithm code. The 
end result is significant savings 
in development time and cost 
savings. Such tools also offer a 
powerful means for developers 
to test and validate applications. 

Software-based  
Floating-Point
In the past, developers had 
a limited number of ways in 
which they could utilize floating-
point technology in MCU-
based designs to increase 
computational precision. 
Introducing a second processor 
to handle calculations was 
often too expensive to consider. 
Alternatively, while the design 
could be migrated to a powerful 
MPU or DSP, neither type of 
architecture is as well-suited 
for the real-time demands of 
embedded systems as an MCU. 
The availability of high-
performance MCUs made it 
possible for developers to bring 
in a floating-point library to 
perform calculations in software. 
While such libraries enabled 
developers to use floating-point 
algorithms, they came at the 
expense of significantly reducing 
system throughput. 

Such libraries also tended to 
be quite large and introduced 
significant processing overhead. 
For example, every operation 
between two numbers had to 
first align the numbers to have 
the same exponent and then, 
after performing the operation, 
round the result and code it 
back into the fixed-point format. 
While all of these actions were 
performed by the floating-point 
library and were not directly 
visible to developers, they still 
resulted in significantly degraded 
performance, greater processing 
latency, and an increased 
memory footprint.

If none of these alternatives was 
feasible and developers still 
needed the flexibility that high-
level modeling tools bring to the 
design process, they had the 
alternative to manually convert 
the floating-point operations in 

the C code generated by the tool 
into a fixed-point implementation. 
The downside of this approach 
is the significant time investment 
required to adapt the code 
combined with the inflexibility to 
easily modify the algorithm later in 
the design cycle.

The STM32 F4 
Advantage: Integrated 
Floating-Point Technology
To stay competitive, developers of 
precision and high-performance 
embedded systems need to 
have access to floating-point 
functionality without sacrificing 
performance or memory efficiency 

through the use of a software-
based floating-point library or 
having to adapt the code by hand 
to a fixed-point implementation. 
With the STM32 F4 MCU 
architecture, developers have 

To stay competitive, developers of 
precision and high-performance embedded 
systems need to have access to floating-

point functionality without sacrificing 
performance or memory efficiency.
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the option of bringing floating-
point efficiency to an extensive 
range of low-cost embedded 
applications. The STM32 F4 
integrates a floating-point unit 
(FPU) to execute these operations 
natively in hardware. The FPU is 
fully compliant with the IEEE.754 
standard and has its own 32-
bit single-precision registers to 
handle operands and results. 
These registers can be viewed 
as double-word registers to 
enable more efficient load and 
store operations. The context 
of the FPU can be saved to 
the CPU stack using several 
methods based on the application 
architecture and whether registers 
need to be preserved or not.
The FPU supports the five different 
classes of numbers defined by 
the 754 standard—normalized, 
denormalized, zeros, infinites, 
and NaNs (Not-a-Number). It also 
supports the five exceptions of the 
standard—overflow, underflow, 
inexact, divide by zero and invalid 
operation—allowing applications 
to handle operations such as trying 
to compute the square root of a 
negative number (i.e., resulting in 
NaN + invalid operation exception). 
Exceptions are “untrapped”, 
meaning that the FPU will return 
the result as specified by the 754 
standard and raise an exception 

flag. If needed, developers can also 
use the STM32 F4 floating-point 
global interrupt to address the issue.
The integrated FPU of the 
STM32 F4 offers a number 
of advantages to embedded 
designers:
〉〉  Access to the more useful 

range and precision that 
floating-point brings

〉〉  Reduced coding complexity by 
being able to work with numbers 
in a more natural format

〉〉  Greater throughput compared to 
software floating-point libraries.

〉〉  Accelerated application 
development as C code 
generated by high-level 
tools can be used without 
modification or wrappers

〉〉  Smaller code footprint since 
instructions that used to be 
multiple lines of code in software 
libraries are now implemented 
with a single instruction

〉〉  Simplified debugging as macro 
calls in floating-point libraries 
are eliminated

Effectively, the STM32 F4’s FPU 
reverses the value proposition 
between fixed- and floating-point 
for many MCU-based designs.

Seamless Integration
Figure 1 shows the difference 
between the assembly code 
generated when an FPU 
is available on an MCU as 

Figure 1  There is a significant reduction in code size when an integrated FPU is available (code on left) than when one is not (code on right).

# float function1(float number1, float number2)
# {
 PUSH   {R4,LR}
 MOVS   R4,R0
 MOVS   R0,R1
MOVS   R1,R4
  BL    __aeabi_fadd
  MOVS   R1,R0
MOVS   R0,R4
  BL    __aeabi_fdiv
  POP   {R4,PC}

# float function1(float number1, float number2)
# {
# float temp1, temp2;
#    
# temp1 = number1 + number2;
 VADD.F32 S1,S0,S1
# temp2 = number1/temp1;
 VDIV.F32 S0,S0,S1
#
# return temp2;
 BX    LR
# }

1 assembly instruction

Call Soft-FPU

FPU assembly code generation
float function1(float number1, float number2)
{
 float temp1, temp2;
   
      temp1 = number1 + number2;
      temp2 = number1/temp1;

 return temp2;
}
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compared to when one is not. 
The example is a simple one, 
adding number1 and number2 
together and storing the result 
in temp1. Number1 is then 
divided by temp1 and stored  
in temp2. 
When an FPU is available, the 
compiler directly uses native 
FPU instructions (see add and 
divide instructions in the code 
on the left). When an FPU is not 
available, however, the compiler 
inserts macro calls to the 
software floating-point library to 
perform the function (see code 
on the right). These functions 
comprise multiple instructions 
that take many more cycles 
to complete the calculation. 
Although the difference is only 
a few instructions, the extra 
overhead represents a high 
percentage of the algorithm’s 
overall load on the CPU. When 
considered over the whole 
of an application, the impact 
on processing efficiency is 
tremendous.

Performance by the 
Numbers
The following example clearly 
illustrates the benefit of having 
an integrated FPU. Figure 2 
shows the code for a simple 
mathematical fractal known as the 

Julia set, given by the equation:
 Zn+1 = Zn

2 + c
where the sequence for each  
x+ i.y point is computed with:
 c = cx + i.cy

This algorithm provides an 
effective way to show the 
impact on performance of the 
STM32 F4’s FPU since no code 
modification is required to utilize 
it. In fact, the only difference is 
whether the FPU is activated 
during compilation.
Figure 3 shows the time spent 
for the calculation of the Julia set 
using different zooming factors. 
As can be seen, the presence 
of an FPU yields an increase 
in performance on the order of 
11.5 to 17 times faster. Again, no 
modification to code is required, 
just selecting the FPU in the 
compiler options.
For applications that need to 
implement signal processing 
capabilities or operate on 
multiple data in parallel, 
STM32 F4 MCUs have a 
versatile architecture that 
also implements hardware-
based DSP capabilities. The 
availability of both an FPU and 
DSP instructions in the STM32 
F4 provides developers with 
a full range of capabilities to 

void GenerateJulia_fpu(uint16_t size_x, uint16_t 
size_y, uint16_t offset_x, uint16_t offset_y, uint16_t 
zoom, uint8_t * buffer) 
{
 float tmp1, tmp2;
 float num_real, num_img;
 float radius;
 
 uint8_t i;
 uint16_t x,y;
 
 for (y=0; y<size_y; y++)
 {
  for (x=0; x<size_x; x++)
  {
   num_real = y - offset_y;
   num_real = num_real / zoom;
   num_img = x - offset_x;
   num_img = num_img / zoom;
   i=0;
   radius = 0;
   while ((i<ITERATION-1) && (radius < 4))
   {
    tmp1 = num_real * num_real;
    tmp2 = num_img * num_img;
    num_img = 2*num_real*num_img + IMG_CONSTANT;
    num_real = tmp1 - tmp2 + REAL_CONSTANT;
    radius = tmp1 + tmp2;
    i++;
   }
   /* Store the value in the buffer */
   buffer[x+y*size_x] = i;
  }
 }
}

Figure 2  Algorithmic code, such as for the Julia set as shown here, requires no 
modification to take advantage of the STM32 F4's hardware-based floating-
point capabilities.
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implement the wide variety 
of algorithms embedded 
applications require. Each 
accelerates different types 
of processing and together 
they complement each other 
to enable the most optimized 
implementation based on 
performance, memory, and ease 
of programming.
The ease of migrating an 
existing application to 
seamlessly take advantage 
of the STM32 F4’s integrated 
FPU capabilities is important 

as well. Consider an STM32 F2 
application executing a floating-
point FIR filter based on the 
CMSIS DSP library available 
through ARM. Figure 4 shows 
the relative time it takes to 
perform the FIR filter 100 times 
on an STM32 F2 with no FPU or 
DSP capabilities using a purely 
software implementation to 
make the necessary floating-
point calculations.
When the same code is compiled 
for the STM32 F4 to leverage 
the FPU in hardware, there is 

100

80

60

40

20

0
32-bit float

no FPU
32-bit float

FPU
16-bit fixed-point
SIMD optimized

10X improvement
Best compromise

Development time vs.
performance 17.9X improvement

Best performance
requires effort for proper

data management

FIR filter execution time (using CMSIS DSP library)

Figure 4  The relative time it takes to execute a FIR filter is 10X better when utilizing the STM32 
F4's FPU. If more headroom is needed, the use of the 16-bit fixed-point SIMD (single 
instruction, multiple data) optimized instructions that are part of the DSP capabilities 
of the STM32 F4 increase performance by 17.9X.

Frame Zoom Duration 
with FPU

Duration 
without

FPU (microlib)
Ratio

Duration 
without
FPU (no 
microlib)

Ratio

0 120 222 3783 17.04 2597 11.70

1 110 194 3276 16.89 2243 11.56

2 100 167 2794 16.73 1906 11.41

3 150 298 5156 17.30 3558 11.94

4 200 312 5412 17.35 3740 11.99

5 275 296 5124 17.31 3540 11.96

6 350 284 4905 17.27 3389 11.93

7 450 289 4989 17.26 3448 11.93

8 600 273 4705 17.23 3251 11.91

9 800 267 4592 17.20 3173 11.88

10 1000 261 4485 17.18 3100 11.88

11 1200 255 4374 17.15 3023 11.85

12 1500 242 4138 17.10 2860 11.82

13 2000 210 3555 16.93 2455 11.69

14 1500 242 4138 17.10 2860 11.82

15 1200 255 4374 17.15 3023 11.85

16 1000 261 4485 17.18 3100 11.88

17 800 267 4592 17.20 3173 11.88

18 600 273 4705 17.23 3251 11.91

19 450 289 4989 17.26 3448 11.93

20 350 284 4905 17.27 3389 11.93

21 275 296 5123 17.31 3540 11.96

22 200 312 5412 17.35 3740 11.99

23 150 298 5156 17.30 3558 11.94

24 100 167 2794 16.73 1906 11.41

25 110 194 3276 16.89 2243 11.56

Figure 3  This table shows the time spent for the calculation of the Julia set using different 
zooming factors. The presence of an FPU yields an increase in performance on 
the order of 11.5 to 17 faster with no modification to code required.
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an immediate 10X improvement 
in relative performance (i.e., 
factoring out the impact of 
clock speed). Just by changing 
processors and activating 
the FPU, there is a significant 
performance advantage. This 
one change to the design is 
enough to yield a tremendous 
amount of headroom for 
additional tasks, depending upon 
the application.
If more headroom is needed, 
the performance of the FIR 
filter can be further improved 

through the use of the 16-
bit fixed-point SIMD (single 
instruction, multiple data) 
optimized instructions that are 
part of the DSP capabilities of 
the STM32 F4. For example, 
when using the SIMD 
optimized FIR algorithm of the 
CMSIS library from ARM, the 
performance improvement is 
17.9X, again not considering 
clock speed. 

Unparalleled Flexibility
Traditionally, when designing a 
DSP-based system, developers 
have to choose between fixed- 
and floating-point architectures. 
Floating-point comes at a price 
premium, and manufacturers 
have had to balance this 
added cost against the extra 
complexity in application 
development that comes when 
using fixed-point. While the 
FPU is an optional component 
of the ARM Cortex-M4 
architecture, ST has designed 
its STM32 F4 family so that 
every device offers an FPU. In 
this way, developers always 
have access to floating-point 
performance and precision 
without compromise. 
The bottom line is that the 
STM32 F4 provides developers 
with a flexible, high-performance 
architecture that offers the real-
time responsiveness of an MCU 
with the precise floating-point 
and digital signal processing 
capabilities that today’s 
embedded designs need. The 
ability of the STM32 F4’s FPU 
to perform fast mathematical 
computations on C-based float 
data is a key benefit for many 
application tasks that require 
precision, including loop control, 

audio processing, sensor signal 
conditioning, digital media 
decoding, and digital filtering, to 
name just a few.
The availability of an FPU 
speeds complex algorithm 
development, all the way from 
high-level design tools down to 
software generation. Hardware 
native support for floating-point 
operations simplifies coding and 
substantially accelerates product 
development by enabling the 
most efficient implementation for 
any mathematical calculation. 
Code that has been generated 
by such tools to be used directly 
by the FPU will offer the highest 
level of performance.
The faster processing an FPU 
brings to applications offers 
either more headroom to 
support new functionality or 
faster time-to-sleep for power-
sensitive applications. It also 
enables developers to introduce 
more complex processing and 
functionality to applications 
than was previously possible 
with traditional MCUs. As a 
result, when implementing a 
mathematical algorithm on an 
STM32 F4, developers never have 
to choose between performance 
and development time. 

Figure 5  A top-level view of the Julia set.
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Achieving Ultra-Low-Power Efficiency 
for Portable Medical Devices

The availability of low-cost, full-
featured microcontrollers has 
created a revolution in the health 
industry leading to equipment 
migrating from the hospital and 
into patients’ homes. Designing 
these portable medical devices 
presents new challenges for 
engineers, such as implementing 
precision analog processing 
requiring complex calculations 
and creating a system that is 
simple and comfortable to operate 
even for physically-challenged 
users. In addition, these devices 
have to be able to run as long as 
possible without having to change 
or recharge batteries, even after 
sitting on a warehouse shelf for up 
to 18 months. To meet the unique 
requirements of portable medical 
devices, developers need an 
advanced processor architecture 
that combines performance,  
ultra-low-power process 
technology, low-cost, and 
efficient power management and 
communications capabilities.

Designing for Medical 
Applications
Next-generation medical 
equipment is evolving along 
two primary paths: sports and 
personal health. Both markets 
require innovation that enables 
portable devices to collect more 
run-time data and complete 
advanced calculations to create 
a comprehensive profile of a 
person’s current condition. Within 
personal health, developers 
also need to understand the 
special requirements of emerging 
disposable devices.
The portable medical device 
market is extremely strong. 
Consider that with 8.3% of the 
US population suffering from 
diabetes, a portable glucose 
meter is an essential tool for 
individuals who need to monitor 
their glucose for conceivably the 
rest of their lives. Similarly, an 
electrocardiogram (ECG) monitor 
enables people at risk for any 

number of conditions to record 
their ECG waveform at home. In 
addition to eliminating the need 
for multiple office visits, home-
based testing gives doctors a 
more comprehensive patient 
history to work with.
Portable handheld medical 
devices have a stringent set 
of requirements (see Figure 1.) 
Given that prospective users can 
be from all walks of life, devices 
must be as simple to use as 
possible, with limited or no setup 
required. They also need to be 
comfortable to use and operable 
even by physically-challenged 
users. In general, the display 
must be large for ease of reading 
and utilize a minimum number of 
buttons to avoid confusing users. 
Ideally, as many functions as 
possible need to be automated 
so that users don’t have to be 
trained how to use the device. 
If the device has a touchscreen, 
the GUI must be intuitive 
and have a limited number of 

operating modes. Both low cost 
and low power consumption 
are critical as well, and devices 
need to be able to run as long 
as possible without having to 
change or recharge the battery. 

By  Jean J. Labrosse, Founder, CEO and President, Micriµm  
Jim Lombard, Application Engineer, STMicroelectronics

〉〉  Easy and simple to operate

〉〉  Large display

〉〉  Minimal number of large 
operator buttons

〉〉  Batteries are easy to 
change, easy to recharge, 
or are sufficient to last  
for the operating life of  
the device

〉〉  Safe and accurate 
operation

〉〉  Low cost

〉〉  Low power

〉〉  Simple connectivity

〉〉  Audio feedback

Figure 1  Common Product Requirements for 
Portable Medical Devices
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An important trend in medical 
applications is the use of 
disposable devices. High-
volume devices such as heart-
rate monitors can provide 
medical professionals with 
important data that is useful in 
identifying issues before they 
become full-blown problems; 
e.g., by having a patient track 
his or her heart rate for a few 
weeks after an operation, a 
doctor can verify the patient’s 
successful recovery. 
The use of disposable devices 
offers many benefits. Rather than 
require patients to purchase a 
monitoring device designed to 
operate for years, the hospital 
can provide a “disposable” 
version that can perform the 
task reliably for weeks at a 
significantly lower cost. This 
strategy also enables hospitals 
to leverage innovations in 
technology faster.
Designing a medical device 
for limited use, however, 
substantially shifts the design 
mindset. For example, device 
cost becomes significantly more 
important when the revenue 
stream from consumables is 
weeks rather than years. Devices 
also have to be ready to operate 
out-of-the-box, so parameters 

such as which test strips are 
going to be used need to be 
preprogrammed into devices by 
manufacturers. Power efficiency 
becomes more critical as well. 
Even though they will only be 
used for a handful of weeks, 
devices may first sit on the shelf 
for up to 18 months. During this 
time, the device is in a low power 
mode with the real-time clock 
running. With an ultra-low-power 
MCU, it is possible to achieve 
this without requiring the user to 
change batteries.

The STM32 Architecture
With the STM32 architecture, 
ST offers developers a variety 
of options for balancing cost, 
power, and performance. 
With its smaller die, reduced 
instruction set, and smaller 
memory footprint, the STM32 
F0 provides excellent power 
efficiency at a very low cost. 
This is an ideal MCU for 
applications that don’t need 
to operate longer than six 
months or that use rechargeable 
batteries. For applications where 
power is tantamount, such as 
devices operating on a coin cell, 
the STM32 L1 is optimized for 
ultra-low power performance. 
For devices needing more 
processing capabilities and 

www.micrium.com
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connectivity, the STM32 F1, 
STM32 F2, and STM32 F4 
offer an increasing range of 
capabilities.
The STM32 F0 is based on the 
ARM Cortex-M0 core. While 
other manufacturers also offer 
MCUs based on this core, 
ST has integrated its “STM32 
DNA” into the STM32 F0 to 
create an MCU that provides 
efficient data processing with 
the key peripherals MCU-
based applications require. 
The STM32 F0 also offers DMA 
capabilities to accelerate data 
processing and enable the 
lowest power operation even 
when sampling the ADC at 
a high data rate. With MCUs 
that have a lower level of 
integration, developers have to 
make compromises, such as 
settling for an 8-bit ADC rather 
than having access to the 12-
bit ADC of the STM32 F0.
For complex medical systems 
that involve extensive 
computations, power 
consumption can be reduced 
by introducing the STM32 F0 
as a second processor. When 
a system is in a low power 
mode, for example, it must still 
manage the UI and incoming 
data over its interfaces. Using 

System ARM Cortex-M3 CPU
32 MHz

Touch sensing

Connectivity

Analog

Display

Encryption

Control

Power supply
Internal regulator

POR/PDR/PVD/BOR

Xtal oscillators
32 kHz + 1 ~24 MHz

Internal RC oscillators
37 kHz + 16 MHz

PLL

Clock control

37/51/83/109/115 I/Os

Voltage scaling 3 modes

6 to 8x 16-bit timer

1x 32-bit timer

Cyclic redundancy
check (CRC)

RTC/AWU
2x watchdogs

(independent and window)

Internal multispeed
ULP RC oscillator
64 kHz to 4 MHz

STM32 L15x

Nested vector
interrupt

controller (NVIC)

JTAG/SW debug

AES (128 bits)*

Up to 12-channel DMA

Embedded Trace
Macrocell (ETM)

Memory protection
unit (MPU)

Analog I/O groups
Up to 39 touchkeys

LCD driver
(8x40 / 4x44)

AHB bus matrix

32- to 384-Kbyte
Flash memory, dual bank, RWW

10- to 48-Kbyte SRAM

FSMC

2x 12-bit DAC

12-bit ADC
Up to 40 channels

2x comparators

3x op-amps

Temperature sensor

USB 2.0 FS

3 to 5x USART

2 to 3x SPI

2x I2C

SDIO

Up to 128-byte backup data

4- to 12-byte EEPROM
Boot ROM

Abbreviations:
AWU: Auto wakeup from halt
BOR: Brown out reset
I2C: Inter integrated circuit

 
PDR: Power down reset
POR: Power on reset
PVD: Programmable voltage detector

 
RTC: Real time clock
SPI: Serial peripheral interface
USART: Universal sync/async receiver transmitter

Note:  * STM32L16x only

Figure 2  The STM32 L1 family is built on ST’s 130 nm ultra-low leakage process technology that minimizes node capacitance 
for ultra-low-power operation and efficiency. 
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the primary host processor to 
perform these operations will 
use substantially more power 
than having a more power-
efficient STM32 F0 dedicated  
to these tasks.
For the highest power 
efficiency, ST offers its STM32 
L1 family (see Figure 2). Based 
on the ARM Cortex-M3, the 
STM32 L1 is built on ST’s 130 
nm ultra-low leakage process 
technology that minimizes node 
capacitance. This, combined 
with how the ARM Cortex 
RISC architecture reduces the 
overall number of active nodes, 
creates a powerful combination 
for ultra-low-power operation. 
Providing 32-bit performance at 
up to 32 MHz, STM32 L1 MCUs 
offer up to 384 K Flash and 48 
K SRAM, as well as from 48 to 
144 pins to support high I/O 
applications. 
With the STM32 F1, STM32 
F2, and STM32 F4 families, 
developers have access to a 
tremendous range of processing 
capacity and connectivity. 
The STM32 F1 is based on 
a Cortex-M3 core running at 
up to 72 MHz. For higher-end 
applications, the STM32 F4 
offers a 168 MHz Cortex-M4 
core with both integrated 

floating-point (FPU) and 
digital signal processing (DSP) 
capabilities. In addition, these 
MCUs have multiple DMAs 
and a multi-layer bus matrix to 
offload the CPU and maximize 
data throughput.

Power Efficiency
There are many ways the STM32 
architecture optimizes power 
consumption. For example, 
the STM32 L1 has an internal 
LDO regulator that can be 
programmed to three discrete 
voltage levels. Since energy 
consumed is proportional to the 
square of the core voltage, even 
a very small change in voltage 
can produce dramatic results. 
This allows developers to keep 
the STM32 L1 running at 1.2V 
and only switch to a higher 
performance range when a 
specific task needs to run faster.
Integrated DSP capabilities 
in the STM32 L1 also speed 
complex algorithm processing. 
This is in addition to the 
power/performance advantage 
32-bit architectures have 
compared to an 8- or 16-bit 
MCUs. With its wider bus, the 
STM32 can perform tasks such 
as moving memory or complex 
mathematics much faster 
and more efficiently as well. 

The STM32 L1 also provides 
multiple, industry-leading low-
power modes (see Figure 3), 
dynamic voltage scaling, and 
the ability to run out of RAM 
and disable the Flash controller 

to conserve power. It also 
integrates a programmable 
voltage detector that can 
monitor battery voltage using 
less current than an ADC.

Run
230µA/MHz

From
FLASH

Range 3

Run
186µA/MHz

From
RAM

Range 3

Low Power
Run

@ 32 KHz

Low Power
Sleep

@ 32 KHz

Stop with
or without

RTC

Standby
with or
without

RTC

CPU on
Peripherals activated

RAM & context preserved
Backup registers preserved

STM32L15x Ultra-Low Power Consumption

10.4µA
6.1µA 1.30µA/

0.43µA
1.0µA/
0.27µA

Figure 3  The STM32 L1 provides multiple, industry-leading low-power modes to maximize 
device operating power efficiency.

The STM32 L1's high level of integration 
enables it to provide a single-chip solution, 
with the exception of a few analog signal 

conditioning circuits, for many portable medical 
applications, including glucose meters, heart-

rate monitors, and pulse oximeters.
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The STM32 L1’s high level of 
integration enables it to provide 
a single-chip solution, with 
the exception of a few analog 
signal conditioning circuits, 
for many portable medical 
applications, including glucose 
meters, heart-rate monitors, 
and pulse oximeters. For 
example, in a glucose meter 
(see Figure 4), the STM32 
L1 can automatically wake 
from sleep when a test strip 
is inserted into the device. Its 
2-channel DAC can be used to 
generate a strip bias, enable 
strip calibration, and output 
audible instructions and test 
results. Timers accurately 
control the ADC trigger for 
sample measurement, onboard 
comparators measure correct 
sample staging, and the 
temperature sensor logs the 
ambient temperature for use in 
calculating results. Developers 
can also use the integrated 
comparators to create a power-
efficient analog watchdog that 
monitors an input and wakes 
the STM32 L1 when either the 
upper or lower threshold is 
exceeded (see Figure 5).
A key manner in which the 
STM32 architecture conserves 
power is through the ability of 
the CPU to sleep during ADC 

sample capture. To achieve this, 
the entire analog data capture 
chain needs to be completely 
automated, with no need for 
CPU intervention at any point 
after the chain is initiated. 
Specifically, after the CPU 
configures and starts the auto 

sample capture, it enters sleep 
mode. Between samples, the 
ADC enters an automatic shut 
down mode until a timer triggers 
it. The ADC captures the current 
sample, using the DMA to store 
the data in SRAM, and then 
shuts down again. This process 

repeats until the entire capture 
sequence is complete. The 
DMA will then wake the CPU to 
process the samples that have 
been stored in SRAM.
The power savings can be 
significant using the unique 
ability of the STM32 L1 to 

CORTEXTM-M3 
CPU 32 MHz

With MPU

2 AA battery

STM32 L1

DMA Controllers

Timers
PWM

2 x Comparators

2 x 12-bit DAC

1 x 12-bit ADC
26 channels/

1Msps

Data EEPROM 4KB

Up to 16KB SRAM

64KB-128KB
Flash Memory

8x40
Segment LCD

2 x I2C

GPIOs
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Strip Detect

Internet

Power Supply
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POR/PDR/PVD/BOR

RTC/AWU + 
80B Backup Regs

USB 2.0 FS Host PC

LCD Panel
8 x 40

USER Buttons

Voice

Figure 4  The STM32 L1’s high level of integration enables it to provide a single-chip solution, with the exception of a few 
analog signal conditioning circuits, for many portable medical applications such as blood glucose meters.



31

STM32 Journal

power down the ADC between 
samples. Consider an ECG 
monitor where the sampling rate 
is 1 KHz or one sample every 1 
ms. The ADC of the STM32 L1 
consumes at most 900 µA and 
has a capture time of only 1 µs 
for a power duty cycle of 0.1%. 
If the STM32 L1 were a typical 
MCU, the ADC would consume 
full power even when it is not 
capturing samples. Thus, if 
the system were using a 1 ms 
measurement window, the ADC 
would draw 900 µA during a 
power duty cycle of 100%.
With the automatic power down 
control mode of the STM32 
L1, however, the ADC is able 
to power down for the majority 
of time between samples. 
Figure 6 shows actual power 
consumption numbers for 
various operating conditions. The 
difference in power consumption 
is dramatic between when the 
ADC is left on continuously 
versus using automatic power 
down control saving mode, 
dropping in the lowest power 
consumption example from 900 
µA to 150 µA at 32 kHz.
Note that the STM32 L1 has 
the flexibility to scale the CPU 
clock while keeping a constant 
16 MHz clock available for ADC 

conversion. This means that the 
CPU can run at a frequency of 32 
kHz while the ADC maintains a 1 
MSPS sampling rate while only 
drawing 150 µA.

Precision Analog
Many medical applications require 
the ability to read very small 
signals. For example, an ECG 
monitor has to capture the very 
small electrical signal generated by 
the heart muscle while removing 
the 50 or 60 Hz noise signals 
that are common in electrodes 
attached to the human body. 
MCUs typically offer an 8- or 10-
bit ADC. With its 12-bit ADCs, 
STM32 MCUs enable developers 
to achieve greater precision when 
measuring the weak signals 
typical of the human body. In 
addition, with sample rates up to 
1 Msample/second, developers 
have the headroom to access 
even more accuracy through 
oversampling. This enables 
devices to operate in noisy 
environments and applications 
that could not be served by an 
MCU with only an 8-bit ADC.

Power-Efficient 
Communications
The STM32 architecture offers 
a wide range of interfaces, 

Figure 5  Developers can use the integrated comparators to create a power-efficient analog 
watchdog that monitors an input and wakes the STM32 L1 when either the upper or 
lower threshold is exceeded.
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Figure 6  The automatic shut down mode of the STM32 L1 turns off the ADC for the majority of 
time between samples to provide dramatic savings in power consumption compared 
to when the ADC must be left on continuously.
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including Ethernet (available 
on the STM32 F1, F2, and F4), 
USB (available on the STM32 
L1, F1, F2, and F4), SPI, SDIO, 
and CAN. For applications that 
only transmit data a few times 
a day, interface current has 
minimal impact on operating 
life. However, for an application 
like a heart-rate monitor which 
may be constantly transmitting 
data, the efficiency of the 
STM32 L1’s peripherals can 
provide substantial benefit. 
With integrated USB and/or 
Ethernet, developers can support 
connectivity at the lowest cost.
Some devices may need 
to support both USB and 
Ethernet. By abstracting the 
communications interface, the 
application won’t need to know 
which type of link it is using. 
Developers can achieve this by 
creating a data in/out function 
that determines the actual data 
interface to be used in any 
particular operating circumstance 
and applies the appropriate 
communications APIs. 
Developers can also take steps 
at the application level to ensure 
power efficient transmissions. 
For example, collecting data for 
a short time and then bursting it 
will conserve power compared to 
continuous transmission.

For devices that will connect 
directly to the Internet and 
transmit personal health data, 
security is essential. This 
will impact power efficiency 
since security handshaking 
will increase the time the 
communications link must be 
active. The STM32 F2 and 
STM32 F4 minimize transmit 
processing latency with an 
integrated security engine that 
accelerates AES 256, 3DES, 
SHA-1, MD-5, and HMAC 
processing.
Using an off-the-shelf stack 
substantially speeds time-to-
market. For example, the 40 
standard APIs in the Micriµm 
µC/TCP-IP stack encapsulate 
more than 150,000 lines of code. 
This stack has been designed 
to minimize memory usage 
and so further reduce power 
consumption. Extensions to the 
stack are also available, such as 
SSL support.
Micriµm is also introducing 
IPv6 over IPv4 support to its 
µC/TCP-IP stack. IPv6 is an 
important enabling technology 
for medical applications. With the 
virtually unlimited number of IPv6 
addresses available, individual 
devices can be assigned a 
unique IP address. This enables 

devices and patients to be 
identified automatically and 
without interaction from users 
who may not be tech-savvy 
enough to register a device 
online. It also future-proofs 
devices to be able to be used 
in the years to come as IPv4 is 
phased out.
To further simplify device 
connectivity, ST offers the 
ST Healthcare Library that is 
certified for the USB Personal 
Health Device specification. 
This spec supports different 
subclasses of common medical 
devices and enables doctors 
and patients to connect 
seamlessly over the Internet. 
The library brings remote 
monitoring capabilities to 
every STM32-based design, 
as well as accelerates time-
to-market. In addition, the 
library components have 
been tested and certified, 
enabling developers to bypass 
several certification tests with 
confidence that the stack 
will perform as required. The 
stack footprint is very small 
at just 9.2 K Flash and 2.9 K 
RAM for a typical thermometer 
application. A thermometer 
reference demo is available on 
the STM32 L1 evaluation board.

Real-time Integration
To enable a portable device to 
support a wireless interface 
with only 3AAA batteries, it is 
critical to be able to intelligently 
manage power. Using an 
OS like Linux, for example, 
significantly increases startup 
time from low power modes. 
In contrast, tight integration 
between the stack and a real-
time kernel ensures that the 
radio can be turned on and off 
as quickly as possible. 
Running a real-time kernel also 
helps simplify power mode 
management. Without a kernel, 
the typical embedded application 
manages tasks using a main 
loop. Effectively, the loop polls 
a series of tasks. Even if the 
device is not doing anything, 
the CPU still needs to poll tasks 
continuously to see if any of 
them need attention.
Because developers never 
know which tasks will be 
executed during any loop 
iteration, it becomes difficult to 
determine the optimal power 
saving mode in which to place 
the system after any particular 
task has completed since 
each mode offers different 
responsiveness. In addition, 
as the main loop increases in 
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size, managing power becomes 
more convoluted.
With a real-time kernel, the 
CPU returns to the IDLE task 
whenever none of the tasks 
need attention. Because no 
tasks are currently running, it is 
much more straightforward to 
manage power. When the IDLE 
task is interrupted, the system 
can quickly be powered up. This 
gives developers the ability to 
take the system context into 
account when selecting a power 
mode and clock speed that 
provides the appropriate level 
of responsiveness (i.e., how 
fast the system can wake to an 
active state).
Using the IDLE function to 
manage power also simplifies 
any migration of applications 
between STM32 processors. 
For example, tuning an 
application based on the STM32 
L1 for power may require a 
different approach compared 
to an STM32 F0 or STM32 
F4. By consolidating power 
management in a single routine, 
developers can be sure to be 
able to optimize efficiency 
without having to completely 
rewrite the application.
Designing your own real-time 
kernel is an option. However, 

the use of a commercial 
real-time kernel like µC/OS-
III from Micriµm provides a 
wide range of multitasking 
capabilities that make it easier 
to add new functionality to 
a system without impacting 
system reliability. For example, 
when a new feature like a 
GUI is introduced, it can be 
given a low priority. Thus, a 
critical system task such as 
driving the pump on a blood 
pressure monitor is always 
executed when it needs to be 
and not disrupted because 
a USB packet arrived at a 
critical moment. In this way, 
developers can extend the 
UI of a device, as well as its 
connectivity options, without 
negatively impacting reliability. 
A real-time kernel also 
simplifies design and power 
management as more complex 
functions are added to a 
system. For example, while 
executing a time-intensive 
function without a kernel, 
developers need to manually 
check within the function if 
shorter, higher priority tasks 
need attention. With µC/OS-
III, multitasking and priority 
management is automatically 
managed, and developers can 
break their system into separate 

and distinct pieces without 
having to manually manage 
how these pieces interact. This 
also enables developers to 
more accurately measure power 
consumption during early 
design stages as well as verify 
where in their applications 
power spikes may be occurring.
Certification is a concern for 
many manufacturers of medical 
devices as well. Given that it is 
the complete system that must 
be certified, the Micriµm µC/OS-
III kernel and µC/TCP-IP stack 
are provided with source code 
and are fully documented so 
as to facilitate the certification 
process. Using the Micriµm 
kernel and stack can simplify 
certification compared to an 
in-house kernel implementation 
that does not have the maturity 
and years of industry testing 
commercial code offers.
Rather than base a design on a 
specialized MCU that can serve 
only one price point, the STM32 
F0 and STM32 L1, along with 
the rest of the STM32 families, 
provide a flexible architecture 
that can enable developers to 
leverage their code and other 
IP across an entire product 
line. In addition, code- and pin-
compatibility between devices 

allows for a nearly seamless 
migration between processors.
Designing with the STM32 
architecture is also faster 
compared to 8- or 16-bit MCUs. 
Specifically, 8- and 16-bit MCUs 
tend to have a limited tool chain, 
especially when the MCU vendor 
is the only source for tools.  
In contrast, the STM32 
architecture is based on the ARM 
Cortex-M architecture. As such, 
it has the largest ecosystem 
available for any MCU. These 
tools provide more run-time 
information and advanced 
debugging capabilities to ensure 
system robustness and power 
efficiency, as well as verify device 
operation to speed certification.
Creating portable medical 
devices requires an MCU 
architecture that provides 
both performance and power 
efficiency. With its tightly 
integrated architecture, STM32 
MCUs offer a single-chip 
solution that balances cost 
and ultra-low-power operation. 
Combined with the powerful 
capabilities of production-ready 
software such as Micriµm’s µC/
OS-III kernel and µC/TCP-IP 
stack, developers can bring 
reliable medical products to 
market faster.  
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Accelerating Time-to-Market  
Through the ARM Cortex-M Ecosystem

Before ARM, the MCU market 
was fragmented with a multitude 
of vendors offering proprietary 
architectures and tool chains. 
Now, with open architectures 
like the Cortex-M, developers 
are able to base products on 
an entire architecture rather 
than have to tie designs to 
a specific MCU. The result 
is that designs won’t be tied 
to an outdated architecture 
in just a few years. Rather, 
designs will always be current 
with the evolving Cortex-M 
architecture and extensible 
across a wide range of devices 
that can leverage the same 
application code. For example, 
ARM has recently shown its 
commitment to keeping the 
Cortex-M architecture relevant to 
embedded design as well as on 
the leading edge of technology 
by introducing the Cortex-M0 
core. This core extends the 
Cortex-M architecture into 

traditionally 8- and 16-bit 
applications while offering 32-bit 
performance.

The STM32 Ecosystem
ST is the MCU industry leader 
with the broadest portfolio 
of Cortex-M-based devices 
from a single company. The 
STM32 product line offers an 
extraordinary variety of options 
with more than 300 devices 
all based on the Cortex-M 
cores (M0, M3, and M4) to give 
developers unparalleled flexibility 
in finding the optimal MCU for 
their application (see Figure 1).
Part of ST’s strength can be 
found in the software and tools 
available to developers for 
the STM32 architecture. ST 
provides a range of evaluation 
boards, including the STM32 
Discovery Kits, which enable 
developers to evaluate each 
of the STM32 MCU product 
lines. The Discovery kits are 

the cheapest and quickest way 
to discover the STM32 family 
while the evaluation boards 
are complete development 
platforms providing access to 
all peripherals in each STM32 
product line and extension 

headers to make it easy to 
connect a daughterboard 
or wrapping board for the 
target specific application. 
Development tools include 
in-circuit debuggers and 
eprogrammers, reference 

By  Reinhard Keil, Director of MCU Tools, ARM Germany GmbH  
Shawn Prestridge, Senior Field Applications Engineer, IAR Systems 
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Figure 1  The STM32 product line offers more than 300 devices all based on the Cortex-M to 
give developers unparalleled flexibility in finding the optimal MCU for their application.
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designs, and application notes. 
ST also offers a wide variety 
of firmware libraries, many of 
which are available at no cost, 
for implementing motor control, 
DMA, timers, interfaces, audio, 
LCDs, communications, GUIs, 
all standard peripherals, touch 
sensing, and in-application 
programming, to name a few.
ST also recognizes the benefit of 
working with other leaders in the 
industry to expand the tools and 
software available to developers. 
The STM32 architecture is 
based on the ARM Cortex-M 
architecture which has the most 
comprehensive ecosystem of 
tools, software, and engineering 
resources of any microcontroller 
in the world. ST has worked 
directly with a wide range of 
partners to create offerings 
that specifically accelerate the 
development of applications 
based on the STM32 architecture, 
thereby minimizing product 
development investment and 
speeding time-to-market.
The global ecosystem available for 
the STM32 architecture also offers 
many cost savings for developers:
〉〉  The open architecture of the 

ARM Cortex-M cores gives 
developers access to the largest 
MCU ecosystem in the world

〉〉  The vast diversity of the 
Cortex-M ecosystem ensures 
that developers can find 
the tools, software, and 
middleware they need to 
speed the design of nearly any 
application

〉〉  With so many OEMs 
standardizing on ARM, the 
pool of engineers already 
experienced with the Cortex-M 
architecture is large, making it 
easier to find developers. Many 
colleges are teaching to the 
ARM architecture as well

〉〉  Architectural and tool chain 
familiarity reduce the developer 
learning curve and speed time-
to-market

The ecosystem for the STM32 
consists of a complete range of 
tools and software specifically 
designed to speed design. The 
comprehensive tool chain is 
just the beginning. Developers 
also have access to the ARM 
CMSIS libraries, ST peripheral 
drivers, extensive middleware, 
and production-ready 
application software.

Developer’s Foundation: 
The Tool Chain
There are several key 
components comprising an 
efficient development tool chain:
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Compiler: Each compiler offers 
different strengths. Key factors 
to consider are code size and 
performance (typically measured 
in Coremarks). In addition, 
compilers like IAR Embedded 
Workbench automatically use 
the STM32 architecture to 
its best advantage, both in 
terms of leveraging silicon and 
middleware.
Assembler: Assemblers have 
become more of a specialty 
tool over the years given the 
performance and time-to-market 
advantages of coding in C. 
Today, if an assembler is used 
at all, it will likely be to code an 
application’s critical control loop.
Linker: The linker pulls 
together all the code required 
to create the final application. 
It needs to supply program 
and data information to the 
debugger.
Debugger: The debugger is 
the tool most frequently used 
by developers. It provides 
visibility into systems to 
verify program operation and 
troubleshoot issues.
IDE: The Integrated 
Development Environment 
(IDE) defines the workspace 
and design flow. Some tool 

chains support the option of 
replacing the IDE with one of a 
developer’s own choice. 

Given how much time a 
developer will spend with the 
debugger, using a debugger 
that is well-integrated with 
the compiler and middleware 
can substantially simplify 
troubleshooting. For example, a 
debugger that is RTOS-aware, 
USB-aware, TCP/IP-aware, 
etc. will facilitate faster problem 

identification and resolution.
The usefulness of the debugger, 
however, is limited by the ability 
of the MCU to provide visibility 
into its real-time operation. 
MCUs without integrated 
debugging capabilities will 
require developers to rely 
upon outdated and intrusive 
debugging techniques such as 
instrumenting code that can 
interfere materially with run-time 
execution.

The STM32 family of MCUs 
utilizes ARM’s Coresight Debug 
Technology to provide leading-
edge troubleshooting capabilities 
(see Figure 2). For example, with 
streaming trace, developers can 
capture trace data limited only 
by the size of a PC’s hard drive. 
This enables full code coverage 
testing, timing analysis, and 
performance profiling. 
Because Coresight is 
implemented in hardware, it 

Cortex-M Processor

Run Control

Breakpoint
Unit

Memory
Access Unit

Debug
Interface

Cortex Debug 10-pin or
ARM JTAG 20-pin Connector

JTAG or Serial Wire Debug

Serial Wire Viewer

Cortex-M
CPU Core

ETM Instruction Trace
(optional)

ITM Instrumentation
Trace

DWT Data Watchpoint &
Trace Unit

Cortex Debug + ETM
20-pin Connector (optional)

Trace (ETM, ITM, DWT) not available on Cortex-M0

CPU & Interrupt Events

Trace Point
Interface

4-pin Trace

Figure 2  The STM32 family of MCUs utilizes ARM’s Coresight Debug Technology to provide leading-edge troubleshooting 
capabilities including streaming trace, full code coverage testing, timing analysis, and performance profiling.
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imposes no software overhead 
on the CPU and requires no 
external emulation hardware. 
In addition, breakpoints can be 
set and variable values changed 
while the system is running. 
Extensive trace records 
capture the program counter 
and read/write accesses while 
noting time delays and lost 
cycles. Statistical information 
about exceptions, interrupts, 
and events is also collected. 
Signals the MCU is processing 
can be monitored graphically, 
and Coresight provides 
instrumented trace capabilities 
enabling developers to write 
data to specific memory 
locations at run-time. 

With proprietary architectures, 
typically only one or two debug 
platforms are available. With 
STM32 MCUs, developers can 
chose from more than a dozen 
vendors. In addition, the options 
include low-end tools for those 
with simple applications and 
tight budgets as well as high-end 
tools that provide sophisticated 
capabilities for accelerating 
development and simplifying 
verification and certification 
processes.
For example, IAR Systems offers 
its new I-jet in-circuit debugging 
probe for use with the STM32 
architecture (see Figure 3). It 
offers seamless integration with 

IAR Embedded Workbench and 
provides a wide range of real-
time debugging capabilities. The 
I-jet is also capable of measuring 
target power consumption with 
~200 µA resolution at 200 kHz. 
This enables developers to 
debug applications in terms of 
power to fine-tune performance 
while achieving the highest 
power efficiency.

CMSIS:  
Faster Time-to-Market
Part of the value of the STM32 
architecture is the Cortex 
Microcontroller Software 
Interface Standard (CMSIS). 
Created by ARM, CMSIS 
provides a consistent software 
interface that simplifies 
software reuse across the 
entire STM32 product line of 
300+ devices. Each of the 

CMSIS libraries reduces the 
learning curve behind using 
new software and tools to 
significantly accelerate design 
and lower development costs.
Development tools and 
middleware that are CMSIS-
compliant can accelerate 
product design in multiple 
ways. For example, developers 
can create a proof-of-concept 
using a high-performance 
STM32 MCU with the maximum 
memory. This provides full 
flexibility during early design 
when the core product is still 
being defined. Once the design 
is proven, CMSIS makes 
it easier for designs to be 
transparently implemented on a 
different, more optimal STM32 
MCU, even one based on a 
different Cortex-M core.

Figure 3  The I-jet in-circuit debugging probe from IAR Systems offers seamless integration 
with IAR Embedded Workbench and provides a wide range of real-time debugging 
capabilities, including power debugging with ~200 µA resolution at 200 kHz, for fine-
tuning performance while achieving the highest power efficiency.

CMSIS provides a consistent software 
interface that simplifies software reuse across 
the entire STM32 product line of 300+ devices.  

Each of the CMSIS libraries reduces the 
learning curve behind using new software and 

tools to significantly accelerate design and 
lower development costs.
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CMSIS comprises several parts 
(see Figure 4):
〉〉  CMSIS-CORE is a standard API 

for all Cortex-M-based devices 
and abstracts key functionality

〉〉  CMSIS-RTOS provides an API 
for RTOS integration with other 
tools and middleware

〉〉  CMSIS-DSP is a collection of 
61 digital signal processing 
functions that take advantage 
of the STM32’s integrated 
floating-point and DSP 
capabilities. The library is 
designed for block processing 
to reduce interrupt overhead, 
optimize DMA utilization, and 
facilitate easy integration with 
an RTOS or kernel

〉〉  CMSIS-SVD provides a 
System View Description for all 
peripherals to abstract actual 
peripheral implementations 
from application code and 
enable peripheral-awareness 
for debuggers

With the release of CMSIS 3.0, 
ARM is standardizing on an 
RTOS API that makes it easier 
for middleware components from 
different vendors to interoperate. 
This will facilitate the propagation 
of application-specific 
components, such as a TCP/
IP stack, as well as enable the 

development tool chain to be 
RTOS-aware.
The CMSIS DSP library gives 
developers a substantial head 
start on the development of 
complex algorithms. It also 
allows developers to create 
complex application code that 
can be carried between MCUs 

that may not have hardware-
based DSP instructions. This 
means that developers can write 
code for the STM32 F2 and, 
when they compile it for the 
STM32 F4, automatically get the 
full advantage of the STM32 F4’s 
DSP capabilities.

Accelerated Peripheral 
Configuration and  
Driver Design
One time-consuming part 
of product development is 
configuring an MCU’s peripherals 
and then writing drivers for 
the application to utilize them. 
To facilitate faster application 
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Figure 4  The ARM Cortex Microcontroller Software Interface Standard (CMSIS) provides a consistent software interface that 
accelerates product development as well as simplifies software reuse across the entire STM32 product line of 300+ devices.
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design, ST supplies a complete 
peripheral library for use with all 
STM32 MCUs. Instead of writing 
to peripherals directly and locking 
code to a particular device, 
developers use APIs that abstract 
the use of peripherals. This 
approach offers several benefits:
〉〉  Faster time-to-market as 

developers do not need to 
write peripherals drivers or 
debug them

〉〉  More reliable code since the 
peripheral drivers supplied are 
mature and industry-proven

〉〉  Easy migration between 
STM32 devices, even ones 
based on different Cortex-M 
cores. Because the peripherals, 
pin-outs, and code are the 
same or similar among the 
STM32 family, migrating 
between devices really is just a 
recompile

〉〉  Simple customization as C 
source code is provided for all 
peripherals

Middleware: Production-
Ready Software Solutions
One of the factors that 
substantially accelerates product 
development and time-to-
market is the extensive range 
of middleware available for the 

STM32 architecture, including:
〉〉  Real-time kernels and 

operating systems (RTOS)
〉〉  Stacks for all major 

communications protocols, 
including USB, TCP/IP, and 
Bluetooth

〉〉  Advanced design and modeling 
tools such as those used for 
signal processing

〉〉  Display/GUI solutions
〉〉  Touch sensing
〉〉  Java
The STM32 architecture has 
wide industry support, with 
ST’s partners providing a 
multitude of optimized solutions 
for a diversity of applications, 
including audio, industrial, and 
motor control, to name a few. 
For example, developers have 
the option of selecting a full-
featured RTOS for applications 
needing high reliability or a more 
simple kernel for a low-cost 
consumer device. 
To accelerate design,  
however, the development  
tool chain needs to be able  
to integrate well with 
middleware offerings. IAR 
Embedded Workbench, for 
example, has hooks into the 
CSpy software debugger that 

enables RTOS vendors to 
create drivers that make the 
debugger kernel-aware. 
Effectively, this approach 
maximizes the flow of information 
available to developers to 
speed problem resolution. 
Since the kernel/RTOS is the 
primary interface between the 
application and middleware such 

as communications stacks, it 
is important that the debugger 
understand how middleware is 
being managed by the system. 
When a debugger is RTOS-aware 
and USB-aware, for example, it 
can show developers directly into 
frame buffers and display protocol 
information in its native format. 
Without visibility into the RTOS, 
developers would have to 
manually collect this information 
themselves, introducing 
potential error and delay to the 
design process. Rather than 
having to manually resolve 
headers to find the payload, the 

debugger can interpret packets 
and present them in a format 
that allows developers to debug 
at the link level. Complete 
visibility into the system also 
enables developers to more 
thoroughly verify program 
execution for both ensuring 
reliable operation and for 
certification processes. 

IAR Embedded Workbench 
directly supports many 
middleware companies 
and nearly every hardware 
debugger. This enables 
developers not only to 
seamlessly take advantage 
of components from different 
companies but also select 
best-in-class components 
for their applications. IAR 
Systems is the world’s oldest 
embedded C compiler company 
and understands the needs 
of developers to be able to 
choose the elements of the 
ARM ecosystem that are best 
for their application.

One of the factors that substantially 
accelerates product development and time-to-

market is the extensive range of middleware 
available for the STM32 architecture.
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Alternatively, Keil’s MDK-ARM 
development system offers a 
comprehensive approach to 
embedded design by bringing 
together an integrated set of 
development tools, middleware, 
and debug hardware. 
MDK-ARM is available in 
four offerings, from Lite to 
Professional, to match the 
varying needs of development 
teams (see Figure 5). Some of 
its components include:
〉〉  Version 5 of the MDK compiler 

has recently been released 
and offers best-in-class 
performance with full support 
for the CMSIS libraries

〉〉  The Keil µVision IDE provides 
a wide range of features from 
trace view with source code 
synchronization and editing to 
detailed peripheral debugging 
to comprehensive project 
management

〉〉  RTX is a full-featured RTOS 
supporting multiple scheduling 
options, low interrupt latency, 
unlimited tasks, and a memory 
footprint of less than 5 KB. Full 
source code is available

〉〉  Extensive middleware libraries 
optimized for the Cortex-M 
architecture enable developers 
to quickly add support for 

CAN, USB Host/Device, TCP/
IP, GUI development, and 
file system management 
to embedded applications. 
Intuitive configuration wizards 
simplify the use of middleware

〉〉  The ULINK2 and ULINKpro 
debuggers support high-speed 
streaming trace for non-
intrusive, real-time visibility into 
embedded systems

〉〉  ETM Trace enables full 
code coverage testing and 
performance analysis

Frameworks and Libraries
Part of the STM32 value 
proposition is the availability of 
a tremendous amount of off-
the-shelf software. Because 
of the huge volumes of ARM 
processors shipped, even niche 
markets are large enough to 
incent third parties to create 
specialized tools. Since the 
market can support software that 
is highly application-specific, 
developers have a greater 
chance of finding exactly what 
they need already available. 
Some of the application-specific 
libraries offered for the STM32 
include audio, motor control, and 
industrial control.
Using a library with an STM32 
MCU is a straightforward process: 

just include it into the application 
workspace. Depending upon the 
compiler, each function will be 
recognized as a keyword and 
right-clicking will provide fast 
access to the function’s definition 
and parameters. Many compilers 
and linkers will also automatically 
pare out those parts of the library 
you are not using to conserve 
code space. Many libraries are 
provided as binary files created 
for a specific STM32 MCU and 
tool chain. Others are offered with 
source code to enable developers 
to customize code. 

The availability of so much 
production-ready software 
accelerates design by enabling 
developers to work with 
code that provides the base 
functionality for their application. 
Rather than having to learn 
the STM32 architecture from 
scratch, developers can let the 
tool chain abstract low-level 
implementation details. 
For example, IAR Embedded 
Workbench offers over 3000 
example projects. With these, 
developers can load a project 
onto an evaluation board such 

GUI Library

USB Device

File System

TCP/IP Networking Suite

RTX Real-Time Operating System

USB Host

CAN Interface

µVision
Project Manager, Editor & DebuggerARM C/C++ Compiler

MDK-ARM Professional

Figure 5  Keil’s MDK-ARM development system offers a comprehensive approach to 
embedded design by bringing together an integrated set of development tools, 
middleware, and debug hardware to match the varying needs of development teams.
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as the STM32 F4 evaluation 
board and see how a complete 
system has been implemented. 
These projects provide a working 
framework for a wide variety of 
applications ranging from simply 
blinking an LED to operating 
the LCD screen to creating a 
lightweight IP stack to implement 
a web server. Effectively, these 
projects give developers a 
template upon which to base their 
own design. The startup code 
gets developers into their design 
immediately, rather than forcing 
them to spend time figuring out 
how to initialize the MCU.
Combined with the CMSIS 
peripheral library, many of the 
projects can be transferred 
between devices with minimal 
reworking. Thus, developers can 
take projects built for another 
MCU altogether and quickly pull 
the core of the application over to 
the STM32 device of their choice. 

The 80%+ Advantage
With the extensive variety of 
software, middleware, and 
reference designs available, 
developers can expect to 
substantially jumpstart their 
designs. Depending upon the 
application, it is not uncommon 
to find a combination of off-the-
shelf software and middleware 

within the STM32 ecosystem that 
provides 80% or more of the code 
required for a design. This enables 
developers to focus their design 
efforts on the last 20%, leading to 
faster time-to-market as well as a 
highly differentiated product.
This 80% figure is not unrealistic. 
For example, with the availability 
of off-the-shelf USB and TCP/
IP stacks, a communications link 
truly becomes a component that 
can easily be added to a system 
rather than a subsystem that has 
to be designed and fine-tuned. In 
addition, there are many support 
resources available to assist 
developers in customizing code for 
applications that have a specific 
need. ST’s support engineers and 
Field Application Engineers (FAE), 
for example, can provide valuable 
insight in overcoming a variety of 
design challenges.
With the rise of social 
networking, peer support has 
become another important 
element of an MCU architecture. 
The size of the ARM community 
is tremendous, and there are 
a variety of forums where 
engineers can provide peer-to-
peer support. This support can 
be product-based, such as the 
support communities hosted 
by Keil, IAR Systems, and ST 

for their own products. Free 
software, such as FreeRTOS, 
tends to have its own support 
network as well.
Many independent forums have 
also come into being in the 
last decade to assist engineers 
by hosting discussions about 
silicon manufacturers and their 
middleware partners. Engineers 
can search for specific MCUs 
and tools to hear how useful 
others in the industry find them. 
They can also post issues and 
share solutions. 

Software the Way  
You Want It
ST embraces the benefits that an 
extensive ecosystem offers its 
customers. By giving developers 
the choice of software developed 
by ST, by a commercial third-
party, or through open source, 
ST ensures that developers 
have the broadest variety of 
options available to match their 
application needs. 
For example, with its 
cryptographic library, ST 
provides developers with 
security capabilities free-of-
charge that have been 100% 
optimized for the STM32 
architecture. ST also offers a 
number of other application-

specific libraries,including 
USB, motor control, and 
HDMI Consumer Electronics 
Communication (CEC). 
ST has focused on working with 
numerous partners to ensure that 
there are many solutions available 
for the STM32 architecture. Their 
goal is that developers should be 
able to find whatever software 
and tools they need and, in many 
cases, have a choice between 
several vendors as well as 
between open and commercial 
versions. For example, 
developers can select from a 
range of MP3 codecs ranging 
from the open source Helix, ST’s 
codec, and commercial codecs 
with extensions including mixers, 
equalization, etc. This allows 
developers to determine for 
themselves the balance between 
cost, support, efficiency, and 
time-to-market. 
The STM32 family of 32-bit 
MCUs offers developers the 
most extensive and complete 
portfolio of Cortex-M-based 
devices. Combined with the 
comprehensive ecosystem 
around the STM32 architecture, 
developers are able to simplify 
development while bringing 
products to market more quickly 
and at the lowest cost.  



42

STM32 Journal

Introducing a Graphical User Interface  
to Your Embedded Application

Smart phones and similar 
devices have redefined the way 
we interact with technology and 
created a new set of consumer 
expectations as to how a 
Graphical User Interface (GUI) 
should appear. The complex 
layout of Windows that was 
thought to define how a GUI 
should be has given way to 
streamlined interfaces that can 
give users access to all of a 
system’s functionality on the 
smaller displays often used with 
handheld devices. 
Manufacturers have recognized 
that touch-based GUIs can 
bring value to a wide range of 
embedded applications beyond 
consumer electronics, including 
industrial automation, appliances, 
meters, HVAC, security, access 
control, military, automotive, 
and infotainment devices. For 
example, traditional push-button 
interfaces have mechanical 
parts which can fail. Moving to a 
capacitive touch sensing display 

enables not only a more robust 
interface but one that offers more 
flexibility and extensibility. 

32-bit Processing
Adding a GUI to a system, 
however, is not like adding a 
few more buttons or controls to 
a device’s front panel. With the 
nearly ubiquitous availability of 
touchscreens in mobile handsets, 
consumers have come to expect 
electronic devices of all types to 
have a sophisticated user interface 
utilizing 3D objects, perceived 
depth, animated transitions, 
textures, and complex background 
lighting. To create an intuitive 
interface that adds value as well 
as flair to an application, GUIs also 
need to support gestures such 
as tap, drag, fling, and slide that 
consumers are quickly learning 
to consider as a natural aspect of 
any touch-based interface.
Applications based on 8- and 
16-bit processors simply don’t 
have the horsepower to handle 

even simple graphics. The 
availability of high-performance 
MCUs like the STM32 family 
that can provide complete GUI 
functionality with capacitive 
touch sensing on top of the 
primary application has been 
a key enabling factor in the 
proliferation of advanced user 
interfaces. For example, the 
STM32-F0 provides 32-bit 
processing at 8- and 16-bit 
pricing. For more graphics-
intensive applications, the 
STM32-F2 and STM32-F4 
provide sufficient Flash to store 
large graphic images. With 
devices up to 168 MHz/210 
DMIPs, the STM32 family is 
also fast enough to provide the 
responsiveness consumers are 
used to from GUI-based devices.
However, as the cost of 
hardware has dropped, software 
complexity has continued to 
increase. In fact, application 
software has become the leading 
development cost in embedded 

systems, both in terms of 
money and time-to-market. 
To maintain their competitive 
edge, companies need to be 
able to introduce complex 
GUI functionality while tightly 
controlling software development 
cost. Achieving this goal requires 
access to a GUI framework, 
the ability to define the look 
and feel in Java rather than C, 
rapid prototyping capabilities 
to enable consumers to provide 
feedback while target hardware 
is still being designed, and tools 
optimized for the tight memory 
and processing constraints of the 
typical embedded application.

GUI Framework
There are two primary phases 
to designing a GUI. The first is 
the creation of the underlying 
software code that provides 
basic UI functionality. Once this 
GUI framework is in place, the 
look-and-feel of the GUI must be 
designed. To keep system cost 

By  Gérard Bouvet, Marketing and Sales Manager, GeeseWare  
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down, developers must minimize 
the expense for both of these 
processes as well as eliminate 
any unnecessary design delays.
In the past, UIs for embedded 
systems were designed 
specifically for the hardware on 
which they were going to be 
run. With increasing pressure to 
shorten product design cycles, IP 

reuse has become an important 
consideration in UI design. 
Ideally, developers need to be 
able to carry a UI across different 
products using MCUs that may 
be from different families as well.
To achieve this, GUI application 
code is abstracted above 
the hardware. A Hardware 
Abstraction Layer (HAL) handles 
specific low-level details such 
as how graphical data is stored 
in memory and transferred to 
the display (see Figure 1). By 
interacting with the HAL using 
APIs, the GUI application code 
becomes a framework that can 
be ported across an MCU family 
with minimal rewriting required. 
Creating an extensible GUI 
framework is an involved 
process. The HAL enables 
developers to build the 
framework using a language 
other than assembly, leading to 
faster code development and 
greater reusability. Designing the 
framework using C, however, 
can still require substantial 
development resources.
Ideally, rather than design 
a framework from scratch, 
developers can use off-the-shelf 
software to minimize development 
investment. With the right tools, 
the GUI design cycle can be 

shortened from months to weeks. 
GWStudio™ from GeeseWare, 
for example, is a Java Framework 
with a wide array of preexisting 
GUI libraries providing a complete 
human-machine interface (HMI) 
development environment. Its Java 
engine based on IS2T MicroEJ® 
technology is specifically optimized 
for embedded applications that 
have limited memory, constrained 
peripherals, restricted network 
connectivity, and low power 
consumption requirements.
Java brings many advantages to 
GUI-based design compared to 
working in C. Java was designed 
to facilitate GUI creation with an 
emphasis on reuse. In addition, its 
flexibility ensures a simple revision 
process that enables developers 
to quickly implement changes 
to existing designs. With the 
availability of Java for embedded 
applications, developers can 
leverage the benefits of Java in 
many applications:
〉〉  Improved code portability  

and reuse
〉〉  Accelerated development up  

to 3-5 times faster than 
working in C

〉〉  Equivalent performance to 
C-based designs; i.e., less 
than 1 ms responsiveness for 
machine-to-machine (M2M) 

processes (i.e., Ethernet) or 
touchscreen latency

〉〉  Greater functionality in a 
smaller footprint

〉〉  Higher reliability and 
robustness by eliminating 
manual management of 
memory and exceptions

〉〉  Operating system 
independence

〉〉  Large development community
Note that even though the GUI is 
written in Java, the main application 
can be based on C. This enables 
developers to introduce a GUI to an 
existing design without having to 
rewrite the application.
Even with the framework in 
place, however, only half the job 
is done. Now the look and feel of 
the GUI needs to be designed.

Intuitive Look and Feel
Developing an effective GUI can 
be one of the most challenging 
aspects of system design. GUI 
design involves much more 
than simply arranging icons on 
a screen. To be intuitive, a user 
interface has to anticipate how a 
variety of different types of people 
are going to use the device. 
However, it can be very difficult 
to know how an end-customer 
is going to use a device from 

Java Application

Java Class/API

Wrapper C <–> Java

API C

Driver C

External 
Port

Figure 1  Abstracting the hardware through a 
Hardware Abstraction Layer (HAL) 
frees the GUI framework from 
handling specific low-level details, 
leading to faster code development 
and greater reusability. 
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a developer’s isolated position 
behind his or her lab bench.
For example, while it may be 
logical to a developer to group 
functions based on what part of 
the system they impact, users 
will interact with devices based 
on what they want it to do. If the 
function a person wants to use 
most frequently is buried under 
a series of icons, the overall 
experience will be frustrating. The 
UI has become the core factor 
determining the user experience. 
In today’s market where 
consumers have become quite 
sophisticated, a poorly designed 
GUI can mean failure for a product 
regardless of its other qualities.
The reality is that developers 
don’t always know how 
perspective users will try to 
interact with a system. Ideally, 
the hardware should not come 
between users and how they 
want to use the device. In 
addition, to keep the interface 
from being cluttered and difficult 
to navigate, the screen needs 
to display as little information 
as possible while still displaying 
enough data to allow the user 
to easily and quickly make 
decisions. Tappable UI objects/
elements must also be of a 
minimum size but yet also 
comfortable to select.

The placement of icons and 
ordering of GUI elements is, at 
least at first, a fairly arbitrary 
process. However, a slider may 
end up being in an inconvenient 
location or be improperly sized 
for reasons that couldn’t be 
predicted during initial design 
stages. This won’t be clear until 
users are actually given a chance 
to use the interface.
Designing an effective GUI 
involves many such intangible 
considerations that require direct 
feedback. With limited screen real 
estate, the UI must be selective 
and display only content that is 
relevant to the choices a user 
is currently considering. The 
application’s main function should 
be accessible quickly upon start-
up and always simple to return to. 
The final test for an intuitive GUI 
is that it must be obvious to users 
how to use it efficiently without a 
steep learning curve or more than 
a few minutes of training.
It may take extensive testing 
with users for developers to 
understand how the GUI should 
be laid out. This likely won’t 
happen after bringing in just a 
single focus group but rather 
will involve many rounds that 
iteratively improve the ease-of-
use of the interface. The design 
schedule needs to take into 

www.geeseware.com
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consideration that the GUI may 
need to be redesigned several 
times. The sooner accurate user 
feedback can be incorporated 
into the GUI design, the more 
confidence developers can 
have that major changes will 
not be required after significant 
engineering resources have 
been invested in implementing 
the design.

GUI Testing
The iterative aspect of GUI design 
is an important consideration when 
selecting a GUI toolset. The speed 
and ease with which developers 
can modify an existing GUI will 
determine how many design 
iterations the schedule will allow 
and, consequently, how well the GUI 
will capture actual user behaviors. 
Any testing process needs to 
enable stakeholders and end-
users to provide timely input 
into GUI design, preferably 
as early in the design cycle 
as possible. This means that 
developers need access to rapid 
prototyping capabilities before 
target hardware is available. The 
testing process should facilitate 
the capture of user behaviors 
and generation of use cases. 
To achieve this, GUI tools must 
accelerate design to shorten the 
time between test iterations.

Traditionally, developers have 
created simulated environments 
for users to test. Often these 
“wireframe” simulators are 
independent tools that allow 
developers to put together a 
GUI but not necessarily one that 
accurately reflects how the final 
product will look or operate. For 
example, because the simulator 
is running on a high-speed 
PC, screen updates can be 
near instantaneous. Unless the 
simulator is able to emulate the 
MCU that will be used in the actual 
product, developers will be unable 
to verify whether the system is 
responsive enough to satisfy users. 
In fact, feedback from such testing 
may actually mislead developers 
and result in launch delays.
To ensure that the simulator 
matches how the interface will 
operate in production hardware 
as accurately as possible, the 
simulator needs to emulate the 
operation of the target MCU. 
Developing an embedded GUI 
on a PC capable of accurate 
emulation offers several benefits 
to developers (see Figure 2). In 
addition to speeding testing by 
eliminating the need to download 
new firmware to a target, the 
simulator provides several 
analysis capabilities to facilitate 
optimization and debugging:

〉〉  Static and run-time analysis of 
timing and memory footprint

〉〉  Functional code coverage
〉〉  Task profiling and scheduling
Ideally, testers need to have 
as realistic an experience as 
possible. This means working 
on a small screen the same size 
as the one that will be used for 
production. When running on a 
PC, the user may need to use 
a mouse rather than be able to 
touch the device screen. Even if 
a touchscreen is available, it is 
likely the wrong size or a monitor 
that the user cannot hold in his 
or her hand.

To enable realistic testing, 
GeeseWare offers its GWPack™ 
development system. The 
GWPack™ includes a standalone 
and small form factor board 
based on either the STM32-F2 
or STM32-F4 that is prequalified 
and production-ready. With a 4.3” 
resistive or capacitive touchscreen, 
10 ms response time, and access 
in Java to all of the STM32 
architectures peripherals and 
interfaces of the pack, the GWPack 
gives developers a fully operational 
Java platform upon which to carry 
applications from proof-of-concept 
to production faster than has been 
possible before.

Figure 2  GUI design tools like the IS2T MicroEJ® simulator that is part of GWPack™ from 
GeeseWare emulate the target MCU to ensure consumer testing matches the 
operation of the production GUI as closely as possible.
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A complete framework is 
provided as part of GWPack™ 
that allows developers to dive 
immediately into interface 
development rather than writing 
low-level drivers and managing 
system resources to develop  
the Board Support Package 
(BSP). The IS2T MicroEJ® 
simulator for GeeseWare 
GWPack further allows 
developers to simulate their 
designs on a PC while emulating 
the operation of an STM32 MCU. 
Key features include:
〉〉  Built-in display tree and events 

management
〉〉  Window and clickable area 

definition and management
〉〉  Support for single and two-

finger gestures
〉〉  Driving of low-level events to 

closest tree nodes
〉〉  Sub-level display and event 

management at the node level
〉〉  Fully customizable
〉〉  Support for TCP/IP, UDP, and 

HTTP via the Java framework
〉〉  The ability to reference all 

STM32 peripherals directly  
in Java

Because events are object 
dependent, developers can easily 

define—and redefine—interface 
operation, thus accelerating the 
ability to implement feedback 
into designs.
With the GWPack™, developers 
can begin GUI development 
immediately with a low initial 
investment. The standalone board 
is also available in preproduction 
volumes to enable manufacturers 
to quickly mock up a large 
number of systems that can be 
put out into the field to capture 
customer feedback while target 
hardware is still be defined and 
built. Finally, for applications with 
volumes under 10,000 production 
units, the board is a cost-
effective, off-the-shelf alternative 
to designing your own.
For volume applications, 
GWPack™ enables 
manufacturers to complete a 
proof-of-design before investing 
in implementing a design in 
hardware and software. This 
ability to design the GUI in parallel 
with hardware can substantially 
reduce time-to-market.

Critical Design 
Constraints
Applications like industrial control, 
metering, home automation, 
medical, and smart energy don’t 
have the memory or processing 

capabilities of smart phones. As 
a consequence, they need a GUI 
that is specifically designed to 
minimize processing requirements 
and memory footprint. For 
example, to implement a GUI in 
an embedded Linux environment 
can be quite expensive: 32 MB 
RAM + 8 MB Flash for the Linux 
OS plus graphics libraries push 
Flash requirements up to 50-60 
MB, adding on the order of $100 
to system cost.
The framework supplied with 
GWPack™ keeps system 
memory requirements under 
tight control: a full GUI can 
fit in just 128 KB RAM and 
1 MB Flash. In addition, the 
framework does not require 
a real-time operating system 
(RTOS) or kernel to operate. For 
applications with more intensive 
graphical requirements, more 
Flash may be required.
The STM32 architecture, with 
its 32-bit bus, DSP and FPU 
capabilities, and multi-layer bus 
fabric supporting simultaneous 
data transfers provides more 
than enough processing capacity 
to handle the GUI, application, 
drivers, touchscreen, and 
communication ports all with 
a single chip. With its broad 
portfolio of MCUs based on the 
ARM Cortex-M0, M3, and M4 

cores, the STM32 architecture 
enables developers to select 
a processor with the optimal 
blend of performance, memory, 
and peripherals for their 
application. ST also provides a 
variety of tools to accelerate the 
development of general-purpose 
Java-based systems with the ST 
Evaluation Kit.
Touch-based GUIs can bring 
substantial value to a wide range 
of applications by bringing the 
look and feel of products up to 
date while also by capturing more 
value through the user interface. 
In addition, they can improve 
system robustness by eliminating 
mechanical components while 
increasing device flexibility 
to modify the UI over time to 
introduce new features without 
redesigning the enclosure. 
With the STM32 family of MCUs 
and GUI design tools such 
as those from GeeseWare, 
manufacturers are able to 
cost-effectively introduce 
next-generation GUIs to new 
designs as well as to legacy 
products built on 8-, 16-, and 
32-bit MCUs. With the ability to 
design a fully-functional system 
in weeks instead of months, 
developers can accelerate GUI 
design to enable a dramatic 
reduction in time-to-market. 
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