

# STM8S MKT pres.







# **STM8S** introduction



### The new STM8 CISC microcontroller core

*Harvard architecture* with **3-stage pipeline** reaching a peak performance of **20 MIPS** at **24 MHz** (http://www.st.com/mcu/inchtml-pages-stm8s.html)

### An advanced 130nm embedded EEPROM technology

ST-proprietary embedded non-volatile memory technology, excellent characteristics of EEPROM memory with a performing high-density CMOS process and including best analog features



# **STM8S** connectivity and peripheral sets

### • CAN 2.0B, USART, LIN UART, SPI and I2C

- CAN protocol version 2.0A and B Active
- USART with LIN, ISO7816-3s and IrDa interface
- LIN UART, full duplex asynchronous communication
- SPI up to 10Mhz maximum speed
- Multi-master I2C up to 400KHz
- 3x16-bit timers, 1x8-bit timer, Beeper, 2xWatchdog
  - 1x16-bit power control timer (Motor Control): 4 CAPCOMs, 16-bit up/down count, 16-bit prescaler, 6-step PWM generation, programmable dead time generation, 3xcomplementary output, various interrupt capabilities
  - **2x16-bit timers** : 2/3 CAPCOMs, 4-bit prescaler, 16-bit Up counter
  - 1x8-bit auto-reload timer with interrupt generation
  - Beeper
- ADC 16 channels, 10-bit resolution in 3 usec
  - External trigger, VREF+/-, Single/continuous mode

#### SILICA An Avnet Company

# STM8S



- Independent watchdog, IWDG and window watchdog, WWDG
- Clock security system, CSS, in case of a failure on external clock
- POR, PDR and LVD
- Illegal opcode reset
- Error correction code, ECC, on memory
- EMS reset, generated if critical registers are corrupted or badly loaded
- Internal regulator for digital operating at 1.8V filtering perturbations
- Memory write protection, read-out protection
- Positive and negative current injection immunity
- Latch-up immunity
- Optimized layout for supply routing
- Slew rate control on I/Os



## STM8 Key Features



• Mission: Robust, reliable, cost effective and simple





## STM8S Block Diagram



#### Key features

- 3.0-5.5V
- -40 to +125 °C
- 24MHz core frequency (20 MIPS)
- 10K cycles for Flash
- 300K cycles for EEPROM
- 4 Low power modes
   (~5µA in Halt mode)
- Trimmable HSI RC 16MHz, +/-1%
- IrDA and Smartcard IF
- SWIM for fast programming (<6s for 128KB)</li>
- LQFP 80, 64, 48, 44, 32
   VQFN 20, 32, 48
   TSSOP 20



# STM8S families







## STM8S Portfolio







## **STM8S** Pinot compatibility & scalability

System



- **Easy hardware implementation** •
- Smooth migration across the • package family
- SPI, I<sup>2</sup>C, UART always available
- Analog on the same side

Timers

**Analog Inputs** 





## STM8S core and architecture

- Independent busses for instructions and data
- Simultaneous access
- Read & Write in the same cycle



 Separate memories for data and instructions (Harvard Architecture) permits most of the instructions and operands to be fetched, decoded or stored all in a single machine cycle.





## STM8S clock controller



- Clock Security System, CSS: to monitor external clock source failure
- High speed internal RC oscillator, HSI RC @16MHz, calibrated in factory +/-2%, possible to trim down to +/-1%
- Low speed internal RC oscillator, LSI RC @128KHz, calibrated in factory to +/-5% accuracy
- Master clock switching: a fast and easy clock source switch feature in 2usec
- **Peripherals clock gating**: to disable or enable the clock for each peripheral
- Configurable clock output, CCO





# STM8S Excellent memory combination linear

•

| Compatible memory map                                                     | 00 0000h  | RAM                                   |
|---------------------------------------------------------------------------|-----------|---------------------------------------|
| <ul> <li>Up to 128KB flash, 10K write/erase cycle</li> </ul>              | 00 17FFh  | 1024B Stack                           |
| <ul> <li>Up to 6KB RAM</li> </ul>                                         |           |                                       |
| <ul> <li>Up to 2KB data EEPROM, 300K write/erase cycle,</li> </ul>        | 00 4000h  | EEPROM                                |
| read-while-write                                                          | 00 47FFh  | up to 2KB                             |
| <ul> <li>Boot ROM for boot loader code through UART</li> </ul>            | 00 4800h  | Option Bytes                          |
| <ul> <li>1 byte or block/word programming</li> </ul>                      | 00 48FFh  | Peristers                             |
| <ul> <li>128KB programming time in 6sec</li> </ul>                        | 00 000011 | Registers                             |
| <ul> <li>6 bits ECC for 32 data bits (single error correction)</li> </ul> | 00 6000h  | Boot ROM                              |
| <ul> <li>Efficient read-out protection mechanism</li> </ul>               | 0067FFN   |                                       |
| <ul> <li>In-application programming, IAP and in-circuit</li> </ul>        | 00 7F00h  | Registers                             |
| programming, ICP                                                          | 00 80805  | $\downarrow \downarrow$ 32 IT vectors |
|                                                                           | 00 000011 |                                       |
| Scalability in memory size and pin-count                                  |           | Flash                                 |
| • 4KB to 128KB flash in 20/32/44/48/64/80 pin packages                    |           | up to 128KB                           |
| <ul> <li>Package-in-package compatible</li> </ul>                         |           |                                       |
|                                                                           | 02 7FFFh  |                                       |
|                                                                           |           | 012                                   |



## **STM8S** Smart power management



 Advanced Clock Control Architecture allows the device to switch from low speed clock to high speed clock in 2usec

| Mode for STM8S208MB                     | Oscillator | CPU  | Peripherals | Wake-up trigger event         | Consumption (Typical) |
|-----------------------------------------|------------|------|-------------|-------------------------------|-----------------------|
| RUN*                                    | ON         | ON 📝 | OFF         |                               | 2.5mA                 |
| RUN**                                   | ON         | ON   | ON 💽        |                               | 1mA+0.6m<br>for/Mhz   |
| Peripheral Clock Gating                 | ON 📝       | ON 📝 | ON 📝        |                               | To be define          |
| Wait @ RC 16Mhz 5V                      | ON V       | OFF  | ON 🔮        | Internal or external IT       | 1.3mA                 |
| Active Halt Fast Wake-up @<br>RC 128Khz | 128Khz     | OFF  | OFF         | External IT or AWU<br>(2µS)   | 250µA                 |
| Active Halt Slow Wake-up<br>@ RC 128Khz | 128Khz     | OFF  | OFF         | External IT or AWU<br>(100µs) | 11.5µA                |
| HALT @5V                                | OFF        | OFF  | OFF         | External IT<br>(100µS)        | <1µA                  |

\*All peripherals OFF, 16MHz RC at 5V, 25 °C

peripherals ON, all i/o ports toggling in infinite loop with 16MHz RC at 5V, 25 °C



# STM8S IO Robustness



 IO ports are robust against current injection in adjacent digital or analog inputs.



- Injection current of 4mA leads to ILKG <1µA</li>
- No external protection elements simple resistor is enough
- Outstanding robustness against transients and emission



# **STM8S** SWIM and Debug module

- Non-intrusive, SWIM doesn't use any CPU resource.
  - No restrictions for addresses and memory space.
  - No monitor code
  - No interrupt remapping
  - Use only single pin
- Real-time code execution, SWIM steals dead cycles to read RAM and registers
  - Single wire interface module for non-intrusive in-circuit debugging and fast programming
  - Unlimited instruction breakpoints
  - 2 configurable advance breakpoints up to 23 conditions and data breakpoints
  - Read/write all memory and peripheral registers during application execution





## **STM8S** Compliance to Class B of IEC60335

- ST is committed to support customers to have IEC 60335 / IEC 60730 compliant end-products
  - Specific hardware features of STM8S to help in conformance to safety regulations
    - **Dual watchdog architecture**, IWDG+WWDG
    - Internal clock sources, HSI and LSI RC
    - Clock security system, CSS, to monitor external clock source
    - Error correction code on memory, ECC
    - High impedance state for I/Os under RESET
  - Class B self-diagnostic library for STM8
    - STL, self-test library for CPU, RAM, flash, WDG and clock source check at start-up
    - Run-time test routines for CPU, RAM, flash, WDG, clock source and stack overflow check
    - Application note and user manual for the library
    - Self-test library f/w modules approved by the VDE
    - All f/w libraries are MISRA C compliant

#### Standard and Touch library solution

Royalty-free source code enabling STM8 for capacitive touch sensing capability

www.st.com/touch-sense-sw-lib





- Complete NRE/Royalty-free source code solution to enable 8-bit STM8 and 32-bit STM32 Microcontroller platforms for Capacitive Touch Sensing capability.
- Detect capacitive Human touch by controlling the charge/discharge timing cycle of a RC network formed by a single resistor and the electrode capacitance Cx.



RC acquisition method based on US Patent from 76' now in the public domain.

- Multi-function capability to combine capacitive sensing function to the traditional MCU features (communication, LED control, beeper, LCD control...)
- Deliver with Hardware development platform and diagnostic tools to ease the design process.



Use capacitive effect of the human finger.



- Detect finger presence near electrode which is behind a panel (glass, plastic, wood...)
- Simple printed board electrodes
- Various electrode shapes

Single and multiple Keys











## **STM8S**<sub>&</sub>L Touch sensing software suite

- Up to 24 keys + 2 wheels/sliders (MCU dependent)
- Low BOM as only 1 resistor by touch channel is required
- Allow to allocate and configure any MCU GPI/O as touch pad
- SW Library allows easy electrodes configuration and combination of keys and Wheel/slider (ex : 5 keys+1 wheel)
- Acquisition, filtering and calibration functions (no additional software layer needed)
- Environment Change System (ECS)
- Touch sensing User interface through Software API (status, configuration)
- Touch sensing parameters setting and configuration : Ex : Acquisition setting, Threshold, Wheel/slider resolution, number of touch pad, type of touch pads (wheel, slider or single keys)...





![](_page_20_Picture_0.jpeg)

| MCU hardware                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 10-Dit timer (acquisition: RC cr<br>/ 1*9-bit timer)          | harge/discharge time measurement)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 O-Dit tiller (post processing: tim<br>( 1 CDL/O post chapped) | ne base)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I GPI/O per channel                                             | and the set of the second set |
| ✓ I I/O TOP LOAD Output (com                                    | mon to all channels)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MCU Elach momory footo                                          | rint (library + constants)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MCO Flash memory rootp                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ✓ Keys only                                                     | ~ 1900 bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ✓ Keys + 1Wheel/Slider :                                        | ~ 3800 bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ✓ Keys + 2Wheels/Sliders :                                      | ~ 3900 bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RAM                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ✓ Keys only :                                                   | ~ 57 + (13*(Nb keys -1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ✓ Keys + 1Wheel/Slider :                                        | ~ 112 + (13*(Nb keys -1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                           | $\sim 154 \pm (13*(Nb keys - 1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

![](_page_21_Picture_0.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

### • Kit content :

 Full STM8S evaluation kit + Touch sensing daughter board and its user manual

- P/n : STM8/128-EV/TS

![](_page_22_Picture_5.jpeg)

#### Touch Sensing daughter board

![](_page_22_Picture_7.jpeg)

![](_page_23_Picture_0.jpeg)

# STM8S Development kits

- **STICE-SYS001-** High-end full featured emulator
- **STM8/128-EVAL-** Evaluation board with full range of peripheral features
- STM8/128-SK/RAIS- Starter kit including everything needed to begin a design
- **STX-RLINK-** Programming and debugging dongle

![](_page_23_Picture_6.jpeg)

024

## **STM8S** Software and firmware library

- ST IDE Visual Develop (STVD), free
- ST Visual Programmer (STVP), free
- STM8 peripheral firmware library and examples
- STM8 IEC 60335 ClassB compliant firmware library, VDE approved

- Raisonance RIDE, free IDE with RBuilder and RFlasher
- Raisonance C Compiler, 16KB free
- Cosmic C Complier, 16KB free

![](_page_24_Picture_9.jpeg)

www.st.com/st

www.raisonano

![](_page_25_Picture_0.jpeg)

## STM8S Motor Control Kit

![](_page_25_Picture_2.jpeg)

 Complete ready-to-use motor control application kit.

This starter kit is suitable for **3-phase brushless** motor drive (either **AC induction** or **permanent magnet types**) based on scalar control (BLDC or ACIM).

 Hardware and associated firmware libraries demonstrate how STM8S can effectively be used in motor control applications.

#### Target markets

- Cost-sensitive appliances and white good applications.
   Some examples are: heating, ventilation, ait-conditioning, blowers, fans, pumps, medical, e-bike, washing machines...
- Salestype: STM8/128-MCKIT, at \$1000

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

![](_page_26_Picture_0.jpeg)

## STM8S Motor Control Kit

![](_page_26_Picture_2.jpeg)

- Flexible design allowing you to run your motor in just a few minutes:
  - as a plug-and-play demo with the BLDC motor included in the kit, in sensor less speed control mode.
  - or, driving an external AC induction motor, after reprogramming the microcontroller, in open loop or in speed control mode.
  - or, creating your own application using the software libraries and debugging/programming tools.

![](_page_26_Figure_7.jpeg)

![](_page_27_Figure_0.jpeg)

# STM8L

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

STMicroelectronics has introduced its first **ultra-low-power** family based on the **8-bit STM8** core. STM8L family combines **high performance** and **ultra-low power consumption** thanks to a **new proprietary ultra-low-leakage process and optimized architecture**.

This family is declined in three different lines making the STM8L an optimal family to support many applications with special care on power savings.

# STM8L

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

STM8 16 MHz, up to **16 MIPS** 

CPU **4** to **32 Kbytes** of embedded **Flash**, up to **2** Kbytes of **SRAM** Three lines: pin-to-pin, software and peripheral compatibility across lines Supply voltage: **1.8 V to 3.6 V** (down to 1.65 V at power down) Ultra-low-power modes: down to **350 nA with SRAM and context retention** Run mode dynamic consumption down to **150 µA/MHz** Fast wakeup from Halt: **5 µs** 

Clock management:

– 1 to 16 MHz crystal oscillator – 32 kHz crystal oscillator

- Internal 16 MHz factory-trimmed RC - Internal 38 kHz low consumption RC

Clock security system (CSS)

State-of-the-art digital and analog peripherals

- RTC - DMA - LCD driver up to 4x28 segments - 12bit DAC - 12bit A/D up to 1Ms

- 2 watchdogs - I2C - USART (IrDA)

Bootloader using USART

Operating temperature range: -40 to +85 °C or up to 125 °C

# STM8L

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Figure_4.jpeg)

# STM8L

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Figure_4.jpeg)

032

![](_page_32_Picture_1.jpeg)

# STM8L101 8K Block Diagram

![](_page_32_Picture_3.jpeg)

![](_page_32_Figure_4.jpeg)

- STM8 Core@16 MHz F<sub>opu</sub>
- -40 to 125°C
- 1.65V to 3.6V range
- Memory
   Up to 8K Flash, 1.5K SRAM

#### Features

- 2 Ultra-Low-Power modes
- +/- 1% Internal RC accuracy
- Low power consumption
   0,35µA Halt,
   0.8µA Active Halt (with AWU)
- Safe Reset System (POR/PDR)
- High ratio high sink/source I/Os (20mA)
- Packages
  - 20 pins QFN/TSSOP
  - 28 pins QFN
  - 32 pins LQFP/QFN

![](_page_33_Picture_1.jpeg)

## STM8L 32K Block Diagram

![](_page_33_Picture_3.jpeg)

#### Core

- STM8 Core@16MHz F\_\_\_\_
- -40 to 125°C
- 1.8V to 3.6V range (down to 1.65V at power down)

#### Memory

 Up to 32K Flash, 2K SRAM, 1K data EEPROM

#### Features

- 4 Ultra-Low-Power modes
- +/- 1% Internal RC accuracy
- Low power consumption
  - 0,4µA Halt
  - 1µA Active Halt (with RTC)
- Safe Reset System (POR/PDR, BOR, PVD)
- All I/Os are high sink/source (20mA)

#### Packages

- 28 pins QFN
- 32 pins LQFP/QFN
- 48 pins LQFP/QFN

![](_page_33_Figure_22.jpeg)

# STM8L Tools

- Hardware Evaluation Platform for all interfaces
  - STM8L101-EVAL (Dec. 2009)
  - STM8L1526-EVAL (Dec. 2009)
- STM8L101 low-power demonstrator with softwaredriven LCD
  - 1.25µA @36Hz refresh rate
  - Order code : STEVAL-IAS003V1 (Dec. 2009)
- STM8L15x Low-Cost/Ultra-Low-Power Demo Board
  - 7 different modes to demonstrate STM8L15x ultralow power
  - Order code :STM8L15LPBOARD (Dec 2009)

![](_page_34_Picture_12.jpeg)

![](_page_34_Picture_13.jpeg)

![](_page_34_Picture_14.jpeg)

![](_page_34_Picture_15.jpeg)

### SILICA An Avnet Company

# STM8L Software

![](_page_35_Picture_3.jpeg)

### ST software libraries free at www.st.com/mcu

- C source code for easy implementation of all STM8L peripherals in any application
  - Standard library source code for implementation of all standard peripherals. Code implemented in demos for STM32 evaluation board

## Class B: IEC60335-1 approved self-diagnostic routines

- ST's self-test-library software modules have been approved by the VDE, a WW recognized test house which pioneered software safety inspection (<u>http://www.vde.com/vde\_en/</u>)
  - CPU registers self-test
  - · Watchdog self-test (even if not directly asked by the norm)
  - Flash integrity check with a 16-bit CRC
  - RAM functional test (using March C algorithm)
  - External clock-frequency measurement
  - Self-test start-up

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

### STM8 examples:

http://emcu.altervista.org/

### ST-MCU

http://www.st.com/mcu/index.html

### STM8S

http://www.st.com/mcu/inchtml-pages-stm8s.html

### **Documents and files for family STM8S**

http://www.st.com/mcu/modules.php?name=mcu&file=familiesdocs&FAM=113

### STM8L

http://www.st.com/mcu/inchtml-pages-stm8l.html

### **Documents and files for family STM8L**

http://www.st.com/mcu/familiesdocs-120.html

### Touch sensing software suite

http://www.st.com/mcu/inchtml-pages-touch\_sense\_sw\_lib.html

### **MCU Training & Seminars**

http://www.st.com/mcu/inchtml-pages-mcu\_train.html

### **Product Brochures & Selectors**

http://www.st.com/stonline/products/promlit/p\_microcontrollers.htm