

Back to main page

STM8S Firmware Library: Coding rules and conventions

Copyright © 2009 STMicroelectronics

The Firmware library uses rules and conventions described in the sections below.

Acronyms

The Table below describes the acronyms used in the firmware library.
Acronym Peripheral/unit

ADC1 and ADC2 Analog/digital converter

AWU Auto wakeup

BEEP Beeper

CAN Controller area network

CLK Clock controller

EXTI External interrupt/event controller

FLASH Flash memory

GPIO General purpose I/O

I2C Inter-integrated circuit

ITC Interrupt controller

IWDG Independent watchdog

RST Reset controller

SPI Serial peripheral interface

Page 1 of 6STM8S Firmware Library: Coding rules and conventions

28/09/2009mk:@MSITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s_fwlib_um.chm::/Library_Rules_Conventions.html

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Naming conventions

The Firmware library uses the following naming conventions:

 PPP refers to any peripheral acronym, for example ADC1 and ADC2.
 System and source/header file names are preceded by the prefix �stm8s_�.
 Constants used in one file are defined within this file. A constant used in more than one file is defined in a header file. All constants are written in

upper case.
 Registers are considered as constants. Their names are in upper case. In most cases, the same acronyms as in the product reference manual

document are used.
 Names of peripheral functions are preceded by the corresponding peripheral acronym in upper case followed by an underscore. The first letter in

each word is in upper case, for example SPI_SendData. Only one underscore is allowed in a function name to separate the peripheral acronym
from the rest of the function name.

 Functions used to initialize the PPP peripheral according to parameters specified in the header file are named PPP_Init, for example TIM1_Init.
 Functions used to reset the PPP peripheral registers to their default values are named PPP_DeInit, for example TIM1_DeInit.
 Functions used to enable or disable the specified PPP peripheral are named PPP_Cmd, for example SPI_Cmd.
 Functions used to enable or disable an interrupt source of the specified PPP peripheral are named PPP_ITConfig, for example SPI_ITConfig.
 Functions used to configure a peripheral function always end with the string �Config�, for example TIM1_ForcedOC1Config.
 Functions used to check whether the specified PPP flag is set or reset are named PPP_GetFlagStatus, for example I2C_GetFlagStatus.
 Functions used to clear a PPP flag are named PPP_ClearFlag, for example I2C_ClearFlag.
 Functions used to check whether the specified PPP interrupt has occurred or not are named PPP_GetITStatus, for example TIM1_GetITStatus.
 Functions used to clear a PPP interrupt pending bit are named PPP_ClearITPendingBit, for example TIM1_ClearITPendingBit.

Coding rules

TIM1 16-bit advanced control timer

TIM2, TIM3, TIM5 16-bit general purpose timers

TIM6 8-bit basic timer

UART1, UART2 and UART3
Universal synchronous asynchronous
receiver transmitter

WWDG Window watchdog

Page 2 of 6STM8S Firmware Library: Coding rules and conventions

28/09/2009mk:@MSITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s_fwlib_um.chm::/Library_Rules_Conventions.html

This section describes the coding rules used in the Firmware library.

Variable types

Specific variable types are already defined with a fixed type and size. These types are defined in the file stm8s_type.h

typedef signed long s32;
typedef signed short s16;
typedef signed char s8;

typedef signed long const sc32; /* Read Only */
typedef signed short const sc16; /* Read Only */
typedef signed char const sc8; /* Read Only */

typedef volatile signed long vs32;
typedef volatile signed short vs16;
typedef volatile signed char vs8;

typedef volatile signed long const vsc32; /* Read Only */
typedef volatile signed short const vsc16; /* Read Only */
typedef volatile signed char const vsc8; /* Read Only */

typedef unsigned long u32;
typedef unsigned short u16;
typedef unsigned char u8;

typedef unsigned long const uc32; /* Read Only */
typedef unsigned short const uc16; /* Read Only */
typedef unsigned char const uc8; /* Read Only */

typedef volatile unsigned long vu32;
typedef volatile unsigned short vu16;
typedef volatile unsigned char vu8;

typedef volatile unsigned long const vuc32; /* Read Only */
typedef volatile unsigned short const vuc16; /* Read Only */
typedef volatile unsigned char const vuc8; /* Read Only */

typedef enum
{
 FALSE = 0,

Page 3 of 6STM8S Firmware Library: Coding rules and conventions

28/09/2009mk:@MSITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s_fwlib_um.chm::/Library_Rules_Conventions.html

 TRUE = !FALSE
}
bool;

typedef enum {
 RESET = 0,
 SET = !RESET
}
FlagStatus, ITStatus, BitStatus;

typedef enum {
 DISABLE = 0,
 ENABLE = !DISABLE
}
FunctionalState;

typedef enum {
 ERROR = 0,
 SUCCESS = !ERROR
}
ErrorStatus;

Peripheral registers

Peripheral registers are accessed through a pointer of structure. Each peripheral has its own structure and pointer. All the structures and declarations
are defined in the stm8s.h file.

Registers structure
The example below illustrates the Serial Peripheral Interface (SPI) registers structure declaration:

typedef struct SPI_struct
{
 vu8 CR1; /*!< SPI control register 1 */
 vu8 CR2; /*!< SPI control register 2 */
 vu8 ICR; /*!< SPI interrupt control register */
 vu8 SR; /*!< SPI status register */
 vu8 DR; /*!< SPI data I/O register */
 vu8 CRCPR; /*!< SPI CRC polynomial register */
 vu8 RXCRCR; /*!< SPI Rx CRC register */
 vu8 TXCRCR; /*!< SPI Tx CRC register */
}

Page 4 of 6STM8S Firmware Library: Coding rules and conventions

28/09/2009mk:@MSITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s_fwlib_um.chm::/Library_Rules_Conventions.html

SPI_TypeDef;

Register names are the register acronyms written in upper case for each peripheral.
RESERVEDi indicates a reserved field (i being an integer that indexes the reserved field).

Peripheral declaration
The following example shows the declaration of the SPI peripheral:

#define SPI_BaseAddress 0x5200
...
#define SPI ((SPI_TypeDef *) SPI_BaseAddress)

In order to access to the SPI peripheral registers, it is necessary to define the label _SPI in the stm8s_conf.h file.
Example:

#define _SPI (1)

The peripheral registers are accessed as follows:

SPI->CR1 = 0x01;

Each peripheral has several dedicated registers which contain different flags. Registers are defined within a dedicated structure for each peripheral.
Flags are defined as acronyms written in upper case and preceded by �PPP_FLAG_�. Flag definition is adapted to each peripheral case and defined in
stm8s_ppp.h file.

Registers reset values
The reset values of all peripheral registers are defined as constants in the stm8s.h file. They are defined as acronyms written in upper-case into the
form:

PPP_<register_name>_RESET_VALUE

Example:

#define SPI_CR1_RESET_VALUE ((u8)0x00) /*!< Control Register 1 reset value */
#define SPI_CR2_RESET_VALUE ((u8)0x00) /*!< Control Register 2 reset value */
#define SPI_ICR_RESET_VALUE ((u8)0x00) /*!< Interrupt Control Register reset value */
#define SPI_SR_RESET_VALUE ((u8)0x02) /*!< Status Register reset value */
#define SPI_DR_RESET_VALUE ((u8)0x00) /*!< Data Register reset value */
#define SPI_CRCPR_RESET_VALUE ((u8)0x07) /*!< Polynomial Register reset value */

Page 5 of 6STM8S Firmware Library: Coding rules and conventions

28/09/2009mk:@MSITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s_fwlib_um.chm::/Library_Rules_Conventions.html

#define SPI_RXCRCR_RESET_VALUE ((u8)0x00) /*!< RX CRC Register reset value */
#define SPI_TXCRCR_RESET_VALUE ((u8)0x00) /*!< TX CRC Register reset value */

Registers bits
All the peripheral registers bits are defined as constants in the stm8s.h file. They are defined as acronyms written in upper-case into the form:

PPP_<register_name>_<bit_name>

Example:

#define SPI_CR1_LSBFIRST ((u8)0x80) /*!< Frame format mask */
#define SPI_CR1_SPE ((u8)0x40) /*!< Enable bits mask */
#define SPI_CR1_BR ((u8)0x38) /*!< Baud rate control mask */
#define SPI_CR1_MSTR ((u8)0x04) /*!< Master Selection mask */
#define SPI_CR1_CPOL ((u8)0x02) /*!< Clock Polarity mask */
#define SPI_CR1_CPHA ((u8)0x01) /*!< Clock Phase mask */

For complete documentation on STM8S 8-bit microcontrollers platform visit www.st.com/STM8

Page 6 of 6STM8S Firmware Library: Coding rules and conventions

28/09/2009mk:@MSITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s_fwlib_um.chm::/Library_Rules_Conventions.html

http://www.st.com/STM8

