STM8S Firmware Library: Coding rules and conventions

Back to main page

STM8S Firmware Library: Coding rules and conventions

Copyright © 2009 STMicroelectronics

S74

The Firmware library uses rules and conventions described in the sections below.

Acronyms

The Table below describes the acronyms used in the firmware library.

Acronym Peripheral/unit

ADC1 and ADC2 Anaog/digital converter
| AWU I Auto wakeup |
BEEP	Beeper	
CAN		Controller area network
CLK		Clock controller

EXTI Externa interrupt/event controller
| FLASH I Flash memory |
GPIO		General purpose 1/0
12C		Inter-integrated circuit
ITC		Interrupt controller
IWDG		Independent watchdog
RST		Reset controller
SPI		Serial peripheral interface

mk: @M SITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s fwlib_um.chm::/Library Rules Conventions.html

Page 1 of 6

28/09/2009

STM8S Firmware Library: Coding rules and conventions Page 2 of 6

| TIM1 || 16-bit advanced control timer |
| TIM2, TIM3, TIM5 I 16-bit general purpose timers |
TIM6 8-bit basic timer

Universal synchronous asynchronous
receiver transmitter

| WWDG || Window watchdog

UART1, UART2 and UART3

Naming conventions
The Firmware library uses the following naming conventions:

e PPP refers to any peripheral acronym, for example ADC1 and ADC2.

e System and source/header file names are preceded by the prefix ‘stm8s_".

e Constants used in one file are defined within this file. A constant used in more than one file is defined in a header file. All constants are written in
upper case.

e Reqgisters are considered as constants. Their names are in upper case. In most cases, the same acronyms as in the product reference manual
document are used.

e Names of peripheral functions are preceded by the corresponding peripheral acronym in upper case followed by an underscore. The first letter in

each word is in upper case, for example SPI_SendData. Only one underscore is allowed in a function name to separate the peripheral acronym

from the rest of the function name.

Functions used to initialize the PPP peripheral according to parameters specified in the header file are named PPP_Init, for example TIM1_Init.

Functions used to reset the PPP peripheral registers to their default values are named PPP_Delnit, for example TIM1_Delnit.

Functions used to enable or disable the specified PPP peripheral are named PPP_Cmd, for example SPI_Cmd.

Functions used to enable or disable an interrupt source of the specified PPP peripheral are named PPP_ITConfig, for example SPI_ITConfig.

Functions used to configure a peripheral function always end with the string ‘Config’, for example TIM1_ForcedOC1Config.

Functions used to check whether the specified PPP flag is set or reset are named PPP_GetFlagStatus, for example I12C_GetFlagStatus.

Functions used to clear a PPP flag are named PPP_ClearFlag, for example I12C_ClearFlag.

Functions used to check whether the specified PPP interrupt has occurred or not are named PPP_GetITStatus, for example TIM1_GetITStatus.

Functions used to clear a PPP interrupt pending bit are named PPP_ClearlTPendingBit, for example TIM1_ClearITPendingBit.

Coding rules

mk: @M SITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s fwlib_um.chm::/Library Rules Conventions.html 28/09/2009

STM8S Firmware Library: Coding rules and conventions

This section describes the coding rules used in the Firmware library.

Variable types

Page 3 of 6

Specific variable types are already defined with a fixed type and size. These types are defined in the file stm8s_type.h

typedef signed long s32;
typedef signed short sl16;
typedef signed char s8;

typedef signed long
typedef signed short
typedef signed char

typedef volatile
typedef volatile
typedef volatile

typedef volatile
typedef volatile
typedef volatile

typedef unsigned
typedef unsigned
typedef unsigned

typedef unsigned
typedef unsigned
typedef unsigned

typedef volatile
typedef volatile
typedef volatile

typedef volatile
typedef volatile
typedef volatile

typedef enum

{
FALSE = 0,

const sc32;
const scl6;
const sc8;

signed long
signed short
signed char

signed long
signed short
signed char

long u32;
short ulé6;

char u8;

vs32;
vsl6;
vs8;

const vsc32;
const vsclo6;
const vsc8;

long const uc32; /* Read

short const uclé; /* Read
char const uc8; /* Read
unsigned long vu32;
unsigned short vulé6;
unsigned char wvu8;
unsigned long const vuc32;
unsigned short const vucl6;
unsigned char const vuc8;

/* Read Only
/* Read Only
/* Read Only

/*
/*
/*

*/
*/
*/

Read Only */
Read Only */
Read Only */

Only */
only */
Only */

/* Read Only */
/* Read Only */
/* Read Only */

mk: @M SITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s fwlib_um.chm::/Library Rules Conventions.html 28/09/2009

STM8S Firmware Library: Coding rules and conventions

TRUE = !FALSE

}
bool;

typedef enum {
RESET = O,
SET = !RESET

}
FlagStatus, ITStatus,

typedef enum {
DISABLE = O,
ENABLE = !DISABLE
}

FunctionalState;

typedef enum {
ERROR = O,
SUCCESS = !ERROR
}

ErrorStatus;

Peripheral registers

BitStatus;

Page 4 of 6

Peripheral registers are accessed through a pointer of structure. Each peripheral has its own structure and pointer. All the structures and declarations

are defined in the stm8s.h file.

Registers structure

The example below illustrates the Serial Peripheral Interface (SPI) registers structure declaration:

typedef struct SPI struct

{

vu8 CR1; /*1< SPI
vu8 CR2; /*1< SPI
vu8 ICR; /*1< SPI
vu8 SR; /*1< SPI
vu8 DR; /*1< SPI

vu8 CRCPR; /*!< SPI
vu8 RXCRCR; /*!< SPI
vu8 TXCRCR; /*!< SPI

mk: @M SITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s fwlib_um.chm::/Library Rules Conventions.html

control register 1 */

control register 2 */
interrupt control register */
status register */

data I/O register */

CRC polynomial register */

Rx CRC register */

Tx CRC register */

28/09/2009

STM8S Firmware Library: Coding rules and conventions Page 5 of 6

SPI TypeDef;

Register names are the register acronyms written in upper case for each peripheral.
RESERVED:I indicates a reserved field (i being an integer that indexes the reserved field).

Peripheral declaration
The following example shows the declaration of the SPI peripheral:

#define SPI BaseAddress 0x5200

#define SPI ((SPI_TypeDef *) SPI BaseAddress)

In order to access to the SPI peripheral registers, it is necessary to define the label _SPI in the stm8s_conf.h file.
Example:

#define SPI (1)

The peripheral registers are accessed as follows:

SPI->CR1 = 0x01;

Each peripheral has several dedicated registers which contain different flags. Registers are defined within a dedicated structure for each peripheral.
Flags are defined as acronyms written in upper case and preceded by ‘PPP_FLAG . Flag definition is adapted to each peripheral case and defined in
stm8s_ppp.h file.

Registers reset values
The reset values of all peripheral registers are defined as constants in the stm8s.h file. They are defined as acronyms written in upper-case into the
form:

PPP <register name> RESET VALUE

Example:
#define SPI _CR1 RESET VALUE ((u8)0x00) /*!< Control Register 1 reset value */
#define SPI _CR2 RESET VALUE ((u8)0x00) /*!< Control Register 2 reset value */
#define SPI ICR _RESET VALUE ((u8)0x00) /*!< Interrupt Control Register reset value */
#define SPI SR RESET VALUE ((u8)0x02) /*!< Status Register reset value */
#define SPI DR RESET VALUE ((u8)0x00) /*!< Data Register reset value */
#define SPI CRCPR RESET VALUE ((u8)0x07) /*!< Polynomial Register reset value */

mk: @M SITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s fwlib_um.chm::/Library Rules Conventions.html 28/09/2009

STM8S Firmware Library: Coding rules and conventions Page 6 of 6

#define SPI RXCRCR_RESET VALUE ((u8)0x00) /*!< RX CRC Register reset value */
#define SPI TXCRCR_RESET VALUE ((u8)0x00) /*!< TX CRC Register reset value */

Registers bits
All the peripheral registers bits are defined as constants in the stm8s.h file. They are defined as acronyms written in upper-case into the form:

PPP <register name> <bit name>

Example:
#define SPI_CR1 LSBFIRST ((u8)0x80) /*!< Frame format mask */
#define SPI_CR1 SPE ((u8)0x40) /*!< Enable bits mask */
#define SPI _CR1 BR ((u8)0x38) /*!< Baud rate control mask */
#define SPI_CR1 MSTR ((u8)0x04) /*!< Master Selection mask */
#define SPI_CR1 CPOL ((u8)0x02) /*!< Clock Polarity mask */
#define SPI_CR1 CPHA ((u8)0x01) /*!< Clock Phase mask */

For complete documentation on STM8S 8-bit microcontrollers platform visit www.st.com/STM8

mk: @M SITStore:C:\SILICA-STday\STM8\STM8SFWLib111\stm8s fwlib_um.chm::/Library Rules Conventions.html 28/09/2009

http://www.st.com/STM8

