

Guidelines for Battery operated applications with SPIRIT1

July 1st 2013

AMS Application Team

Agenda 2

Educational part: Energy, Batteries, ...

Spirit1: Overview of the key product features

Hardware Design: BOM, Output power, RF loses in PCB design

Embedded Software: Integrated Packet Handler, Low duty cycle mode

Documentation & Support Tools

 Used to describe energy absorbed or delivered by an electrical circuit. This energy is supplied by the combination of electric current and electrical potential in the time

Equations

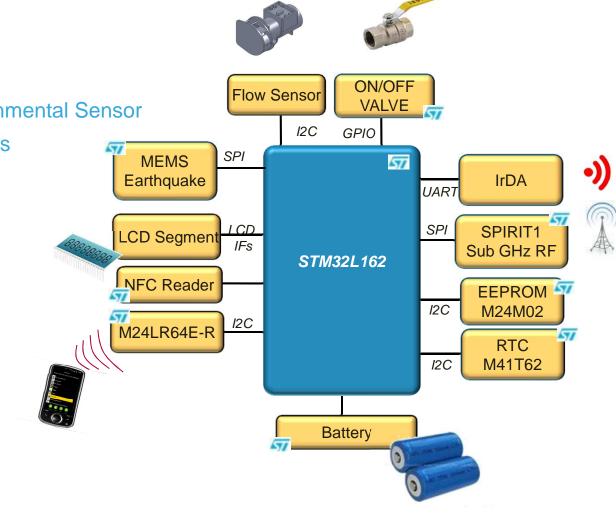
- Joule = Watts x Seconds
- Watt = Volt x Ampere (Ohms law)
 - \downarrow
- Joule = Volt x Ampere x Seconds
- Our focus in low power designs
 - Power source voltage
 - <u>Current</u> consumption
 - <u>Time</u> necessary to perform an operation

• Primary, disposable

- Alkaline (-Zn +MnO₂; KOH), 1.5 V, 0.4-0.6 MJ/kg (quality standard)
- Lithium (-Li +MnO₂, ...\), 3.0 V, 0.8-1.0 MJ/kg (long shelf life)
- Silver-oxide (-Zn +Ag₂O), 1.5 V, 0.47 MJ/kg (very expensive)
- Zinc-carbon (-Zn +MnO₂; NH₄Cl), 1.5 V, 0.13 MJ/kg (common, cheap)

• Secondary, rechargeable

- NiCd, 1.2 V, 0.14 MJ/kg
- Pb-acid, 2.1 V, 0.14 MJ/kg
- NiMH, 1.2 V, 0.3 MJ/kg
- NiZn, 1.6 V, 0.36 MJ/kg
- Li-Ion, 3.6 V, 0.7 MJ/kg
- Li-Po, 3.7 V, 0.65 MJ/kg



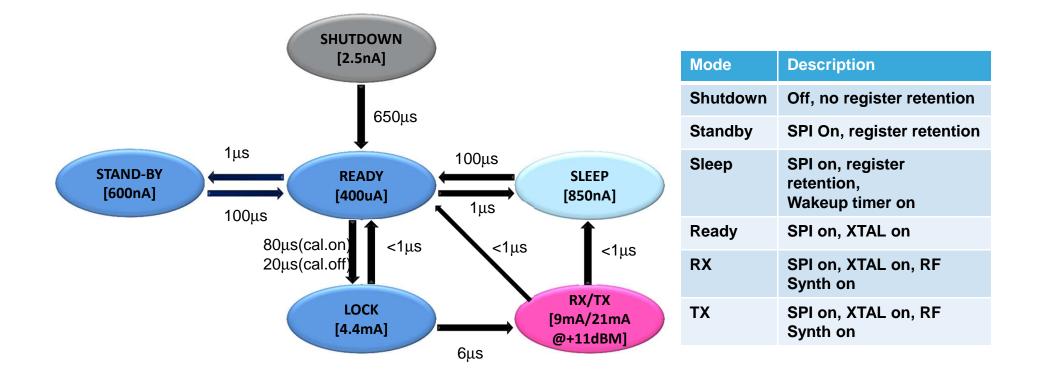
Typical application schematics

Spirit1 + Microcontroller + Sensing Element (+ Actuator)

- Gas meter
- Water meter
- Heat meter
- Wireless Environmental Sensor
- Internet of Things

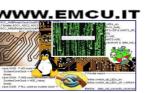
Spirit1 Key Product Features

- Frequency bands: 169, 315, 433, 868, 915, 920 MHz
- Configurable data rate from 1 to 500 kbps
- SPI, GPIO interface
- Supply voltage: 1.8 V to 3.6V
- QFN20 4x4mm, thickness 0.9mm
- Modulation schemes: 2-FSK, GFSK, MSK, GMSK, OOK, ASK
- Suitable for Systems targeting compliance
 - Wireless MBUS standard
 - ETSI EN 300 220, FCC CFR47 Part 15, ARIB STD-67

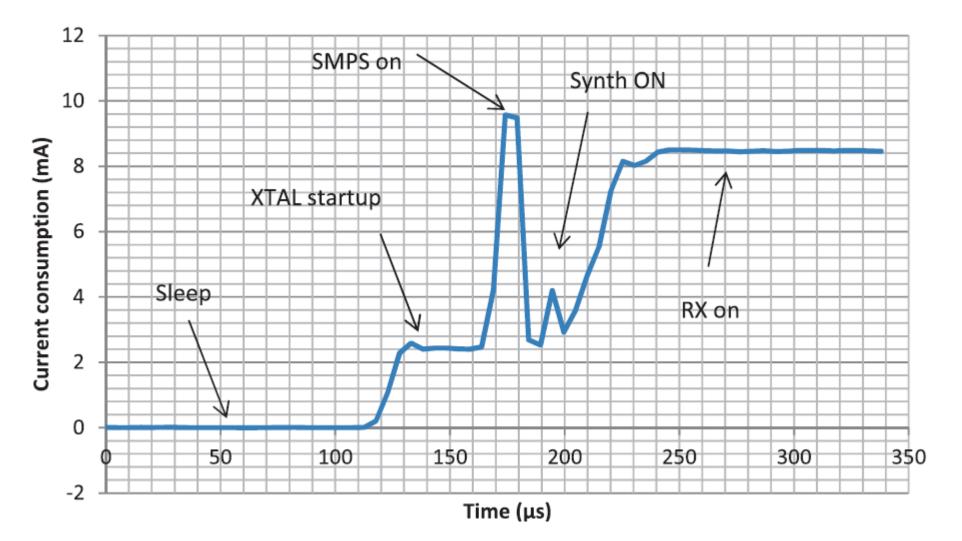

Spirit1 Key Product Features

- Output Power: -36 dBm to +11 dBm (16dBm in boost mode)
- Receiver sensitivity: -123 dBm (1.2 kbps, 169MHz, SMPS OFF)
 -117 dBm (1.2 kbps, 169MHz, SMPS ON)
- Integrated SMPS allows very low power consumption

RX	9 mA	SPI on, XTAL on, Synth on
ТХ	21 mA	SPI on, XTAL on, Synth on
Ready	400 uA	SPI on, XTAL on
Sleep	850 nA	SPI on, register retention, RC oscillator
Standby Mode	600 nA	SPI on, register retention
Shutdown Mode	2.5 nA	Everything OFF



Operating Modes/Consumption


Built-in main controller handles operating mode transitions

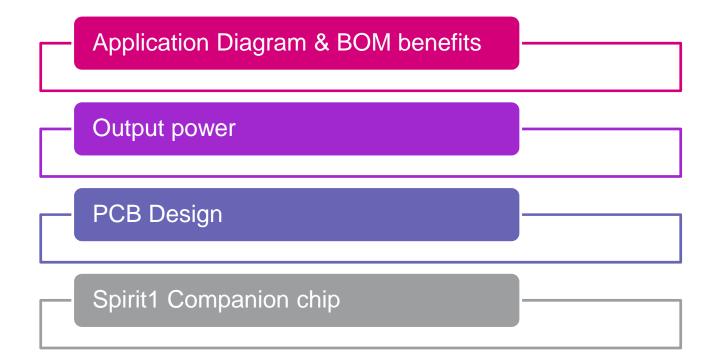
Transition times using 26MHz Xtal

Typical Current Profiles (Rx)

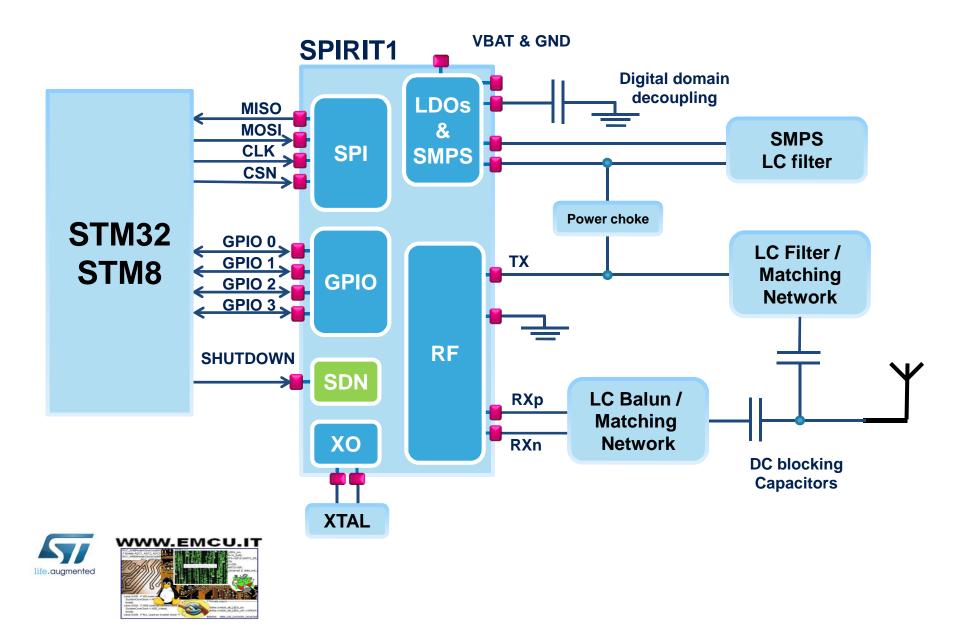
Batteries lifetime 10

• Basic model (example: packet sniff rate 500 ms, 100 frames / day)

State	Current (uA)		Time (ms)		
Polling Rx	9000		6		
Sleep Mode	3.8		494		
Frame reception	10500		250		
Frame analysis	1500		3.5		
Rx Frame / day		100			
IX I faille / day		100			
Battery capacity	attery capacity		1250 mAh		
Capacity available	acity available 50%				
Lifetime		227 day	ys, 0.62 years		

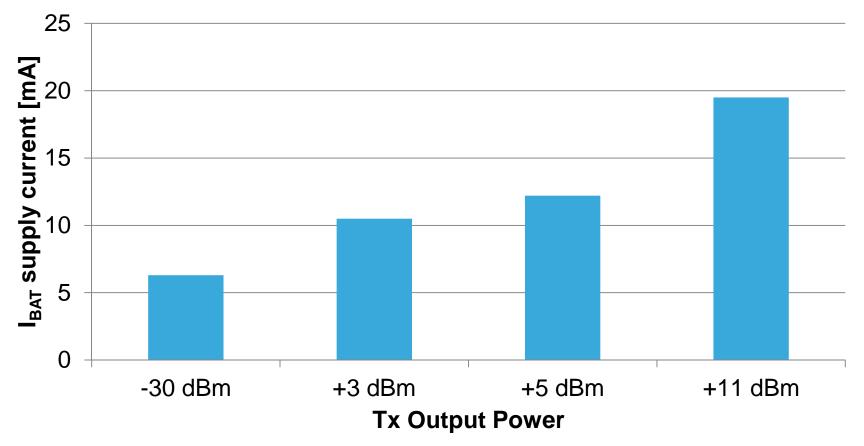

Advanced model

• Step-by-step current & time analysis in order to get realistic battery lifetime estimation



Hardware Design 11

SPIRIT1 Application Diagram 12


SPIRIT1 hw design benefits 13

- <u>No</u> need an external PLL loop filter
- <u>No</u> need an external tank for the VCO
- <u>No</u> need an external TX SAW filter to reduce spurious emissions
 - SAW filter Surface Acoustic Wave
 - ~ 1.5 mA up to 8 mA (Pout dependent)
- No need any external SAW filter in RX to obtain good image rejection
 - ~ 1.5 mA
- <u>No</u> need for TCXO
 - TCXO temperature compensated XO
 - ~ 1.5 mA
- Single ended TX lower current consumption than the differential TX output
 - Single ended TX is more practical for attachment to external PAs available in the market

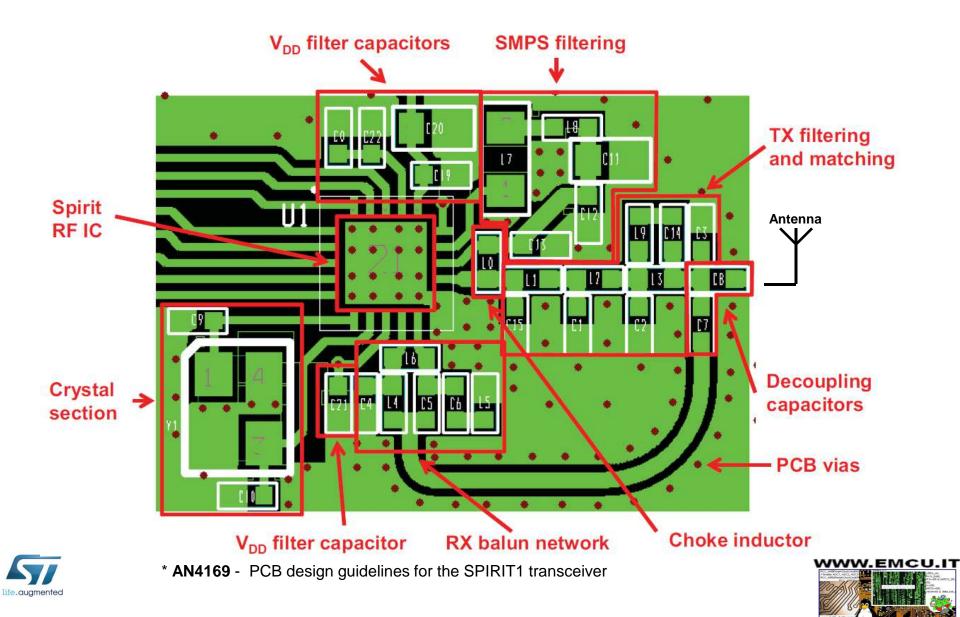
Output power 14

PN9 @ 868MHz

PCB materials 15

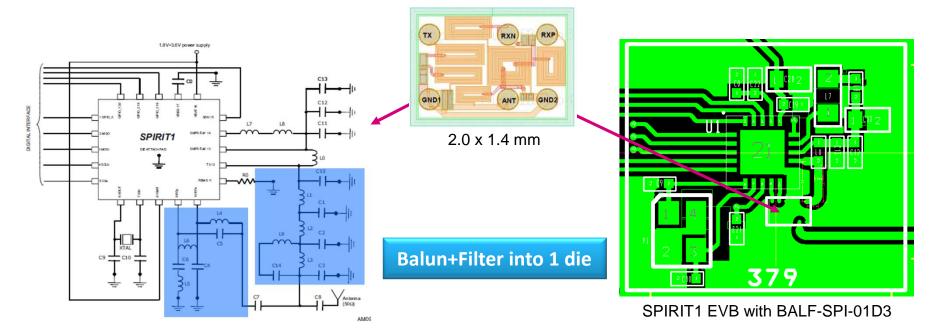
- Dielectric constant (relative permittivity), dissipation factor (loss tangent)
- "standard loss"
 - FR4 (DK 4, DF 0.01)
- "low loss"
 - Rogers R04003 (DK 3.38, DF 0.0027)
 - Roger RT/Duroid (DK 2.2, DF 0.0009)

Two or multi-layer board design

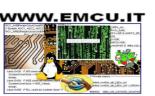

- The advantage of N-layer designs over 2-layer designs
 - Distributed RF decoupling of a DC power plane by a ground plane
 - Ground layer very near to the RF plane to reduce the parasitic effects (Tx spurious emissions)

• Typical 4-layer board stack

- 1. TOP layer, used for the RF signals
- 2. GROUND layer, used only as ground plane
- 3. POWER layer, used for DC power plane
- 4. BOTTOM layer, used for the low frequency and digital signals



SPIRIT1 PCB layout 17


BALF-SPI-01D3 SPIRIT1 Companion chip

18

- ST IPD Technology on Glass
- Covers all ETSI, FCC & ARIB : 868 to 920 MHz frequency range
- Reduced Size (< 3mm², up to 70% vs discrete solution)
- Reduced Cost (-60% from BOM+PCB)
- No components dispersion or temperature variation
- Higher Reliability better Performance (Insertion Losses)
- Reduced PCB sensibility

Embedded Software 19

Autonomous functionalities

Software Design and Programming considerations

Low Duty Cycle Mode

Where Spirit1 works for MCU 20

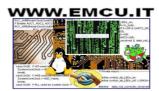
Integrated packet handler

- Support for automatic acknowledgment, retransmission, low duty cycle protocol and timeout protocol
- Automatic Packet Filtering (Source/Destination address, CRC, Control field)
- The Host MCU can stay in power down until a valid RF packet has been received, and then burst read the data
- Automatic clear channel assessment (CCA) engine
 - Channel access mechanism, based on the rule "Listen-before-talk" systems. Embedded CSMA/CA protocol
- Automatic antenna selection
 - Integrated antenna diversity switching mechanism
- Separate 96-byte RX/TX FIFOs

Where software saves 21

• Receiver Quality Indicators & Timeout Mechanisms

- Received signal strength indicator (RSSI) threshold leveling
 - Measured received signal power
- Carrier Sense (CS), timeout
 - Based on RSSI (threshold, static/dynamic mode)
- Link quality indicator (LQI)
 - Level of noise power on the demodulated signal
- Preamble quality indicator (PQI), IRQ & timeout


The value of the Time out can be programmed up to ~3 seconds!

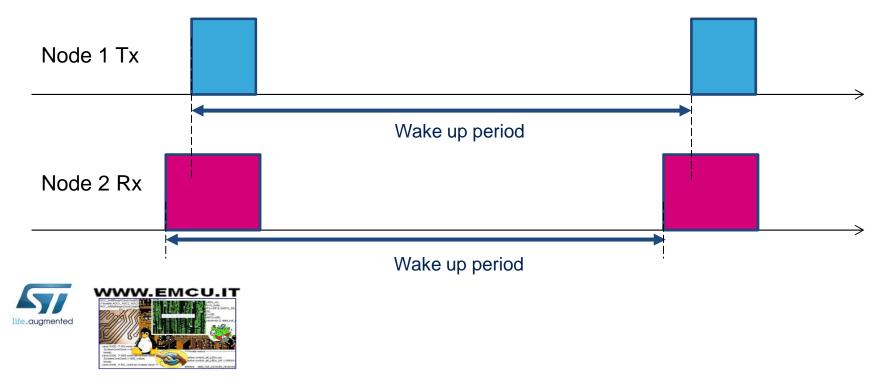
- The best correlation between the received preamble and the expected one
- Packet demodulation can be stopped when PQI is below threshold
- Synchronization quality indicator (SQI), IRQ & timeout
 - The best correlation between the received synchronization word and the expected one
 - Packet demodulation can be stopped when SQI is below threshold

VCO calibration

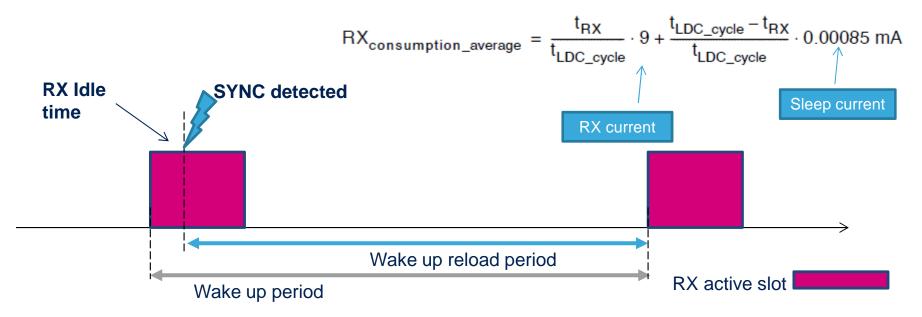
- temperature/VBAT variation
- automatic (80 us) or manual (20 us, when MCU stores the calibration words)

Where to pay attention 22

- Packet format
 - short preamble and synchronization fields, payload optimization, CRC


Communication protocol

- Data rate
- Limited number of channels to monitor in Rx
- FEC/Viterbi and interleaving
 - Convolutional coding in transmitter and on the receiver side error correction is performed using soft Viterbi decoding
 - Number of transmitted bits is roughly doubled, hence the on-air packet duration in time is roughly doubled as well (~1dB link budget increase)
- Data whitening / dewhitening
 - To prevent short repeating sequences that create spectral lines, which may complicate symbol tracking at the receiver or interferer with other transmissions


Low Duty Cycle mode 23

- The Low Duty Cycle (LDC) mode allows operations with very low power consumption, while still keeping an efficient communication link
- WAKE_UP timer is used in LDC mode. It periodically wakes up the SPIRIT1 to perform a transmission or a reception
- To maintain the correct synchronization between the receiver and a transmitter, the value of the wake-up timer can be automatically reloaded at the time the SYNC is detected

SPIRIT1 Low Duty Cycle mode 24

- LDC mode with wake-up timer reload on SYNC allows a better synchronization with the transmitter
- RX Idle time Settling time of the analog RF circuits

The value of the Wake up period can be programmed up to ~2 sec (RC Oscillator)

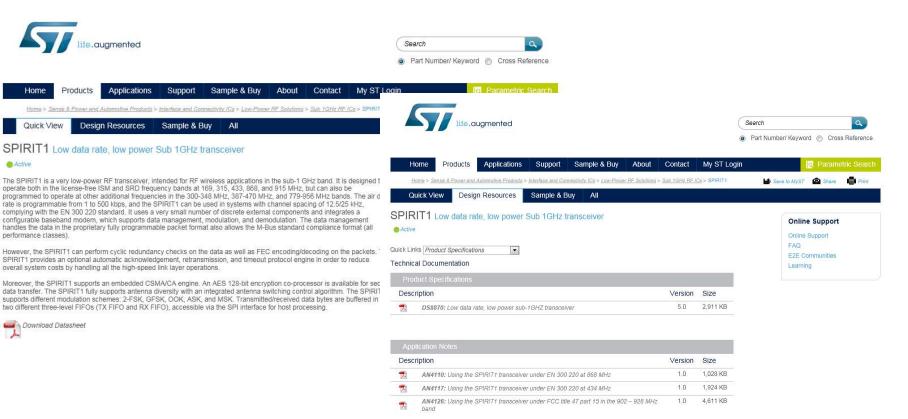
Documentation & Support Tools 25

Datasheet, Application / Design Notes & Tips

Evaluation Boards

Software Development Kits

Technical Support



SPIRIT1 on Internet 26

• Product RTM with All Documentation available at

http://www.st.com/web/catalog/sense_power/FM1968/CL1976/SC1845/PF253167

• Application Notes, Schematics, BOM, Gerber Files, ...

• SW Development Kit (SDK) for STM32L, includes WM-Bus library, Set of examples, Thingsquare MIST (6lowPAN, MESH)

www.

• SPIRIT1 Development Kits

- STEVAL-IKR001V1 169 MHz
- STEVAL-IKR001V2 315 MHz
- STEVAL-IKR001V3 433 MHz
- STEVAL-IKR001V4 868MHz
- STEVAL-IKR001V5 915 MHz
- STEVAL-IKR001V6 920 MHz

Development kit content

- 2 x STM32L based motherboard
- 2 x SPIRIT1 RF modules
- 2 x Antennas
- 2 x USB cables
- Software development kit (SDK) has to be downloaded from http://www.st.com
 - Includes ST Wireless MBUS stack, Examples, Documentation
- Kit boards are preprogrammed with a firmware for GUI evaluation (DFU for firmware upgrade over USB)

Development Kits 27

COMING SOON: STEVAL-IKR002Vx

RF module boards 28

• SPIRIT1 RF module boards

- STEVAL-IKR001V1D 169 MHz
- STEVAL-IKR001V2D 315 MHz
- STEVAL-IKR001V3D 433 MHz
- STEVAL-IKR001V4D 868MHz
- STEVAL-IKR001V5D 915 MHz

COMING SOON: STEVAL-IKR002VxD

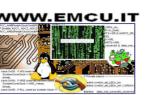
Package content

life, augmented

- 1 x SPIRIT1 RF module
- The RF module is compatible with STM32L mother board from the development kit

STEVAL-IDS001Vx 29

STEVAL-IDS001Vx demo kit RF Dongle


- SPIRIT1 RF transceiver
- STM32L151CBU6 MCU
- Ceramic antenna + U.FL connector
- LDS3985PU33R, LDO
- USBLC6-2P6, protection
- M95256-RMC6TG EEPROM
- SWD connector for debugging

Coming soon!

SDK content

30

SPIRIT1 Library (STM32L, STM8L)

- Spirit1 low level drivers: APIs to manage the features the device offers (platform independent
 - Radio, GPIO, IRQ, Calibration, CSMA etc.
- SDK_EVAL Libraries: APIs to manage the main features of the motherboard
- Examples: BasicGeneric, LDCGeneric, StackGeneric, ...
- WMBUS Library (Binary for STM32L)
 - library files with the PHYSICAL and LINK layer of the WMBUS STACK
 - Examples: 169 or 868 bands and meter or concentrator
- SPIRIT1 SDK Virtual Com port
 - VirtualCom Libraries for the STM32L motherboard.
- MCU Standard Peripheral Library
 - Standard peripheral library for the STM32L + STM8L microcontroller
- STM32 USB-FS-Device Library:
 - USB library for STM32L microcontroller

SPIRIT1 SDK Suite GUI 31

• SPIRIT1 SDK contains PC application (GUI) allowing:

- Radio configuration
- RF tests (TX of unmodulated carrier, TX PN9 sequence, RX activation)
- Packet transmission/reception test with PER evaluation
- AES engine encryption/decryption tests
- Register read/write and dump
- Store/load radio and packet configuration
- Automatic Firmware Upgrade
- Windows XP, 7

SPIRIT1 RF performance evaluation


Radio setting Frequency base [Hz] Channe 169400000 12207	I spacing [Hz] Channel	Center Frequency [H: 169400000.0	z] XTAL frequency [Hz]	Test RF TX CW START
Modulation Data ra	te [bps] Frequency deviation [Hz]	Channel filter [Hz]	Output power [dBm]	
GF5K1 4804	1240	10192	10.4	ONFIGURE RADIO
Packet setting TX/RX settings Device role RX TX	STack feature	A commands		START
1000 😧 100 👽				10
HEX STMicroelectronics	● ASCII		O RAND lei	yload ngth: 18 🗘
Information about the test				
-#997. packet sent. -#998. packet sent. -#999. packet sent. -#1000. packet sent.			^	Payload length: 18 📚

Analog, MEMS & Sensors (AMS) Application Support Team

... is providing technical application support for customers, designing in ST Analog, MEMS & Sensors products, in projects agreed with local EMEA ST sales office / Technical marketing team

- Solving
 - Product and Application problems answering detailed technical questions
- Providing
 - Design consulting (Schematic, PCB and Software)
 - Technical Trainings

... and RF IPD/IPAD RF Baluns

Contact email: AMS-support-EMEA@st.com