

AN4198: Increasing the radiated Output Power up to +16 dBm

- In the default configuration the transmitter internal power amplifier output (pin 12) is biased by the 1.4V SMPS voltage output through the L0 external inductor

- Biasing the PA output through the inductor L0 directly connected to the battery, instead of the SMPS output allows to increase the maximum output power delivered to the antenna
- Example

Table 1. 170 MHz maximum output power and current consumption

Voltage supply $\mathbf{V}_{\text {BAT }}$	Maximum output power (measured at connector)	Current consumption (TX mode)
3.6 V	+16.1 dBm	54 mA
3.0 V	+15.6 dBm	51 mA
2.4 V	+14.8 dBm	44 mA
1.8 V	+13.0 dBm	27 mA

AN4193: Low duty cycle operation with SPIRIT1 transceiver [1/X]

Why?

- To reduce average power consumption during RX and TX operation
- To build a synchronized star network where both transmitter and receiver can sleep periodically to reduce average power consumption
- LDC mode is controlled by two timers:
- The LDC timer which defines the window where

tLdC croce - max. 2s, granularity 29 $\mu \mathrm{s}$ the duty cycle operation take place (tLDC cycle)
- The RX_TIMEOUT timer which defines the amount of time that the receiver is active (trx)

$$
\begin{aligned}
& \mathrm{RX}_{\text {consumption_average }}=\frac{\mathrm{t}_{\mathrm{RX}}}{\mathrm{t}_{\mathrm{LDC} \text { _cycle }}} \cdot 9+\frac{\mathrm{t}_{\mathrm{LDC} \text { _cycle }}-\mathrm{t}_{\mathrm{RX}}}{\mathrm{t}_{\text {LDC_cycle }}} \cdot 0.00085 \mathrm{~mA} \\
& \text { define tRX? } \\
& \hline \mathrm{RX} \text { current }
\end{aligned}
$$

AN4193: Low duty cycle operation with
 How to define trx? SPIRIT1 transceiver [2/X]

- RX timeout using the Sync detection

- When valid Sync is detected, we are receiving a valid data packet
- RX timeout is stopped when a valid SYNC word is detected and the receiver is expected to receive a complete packet
- RX timeout using the RSSI detection
- RX timeout is stopped upon detection of signal energy above a certain user defined threshold
- This mode will further reduce average power consumption by decreasing the time when receiver must be on. On the other hand the MCU needs to check that a valid message is received within a user defined timeout.
- The time to measure RSSI of the incoming signal will vary according to the RX filter bandwidth

STack packet format

$R X$ filter min $(\mathbf{k H z})$	$R X$ filter max (kHz)	RSSI detection time $(\mu \mathbf{S})$
4.2	7.0	1800
7.0	14.0	950
14.0	28.0	550
28.0	56.1	346
56.1	112.3	280
112.3	224.7	175
224.7	450.9	90
450.9	800.1	34

AN4193: SPIRIT1 Current consumption profile during wake up to RX

