Wireless M-BUS Solutions SPIRIT1 & STM32L

Filippo Colaianni

Technical Marketing Section Manager Smart Grid & Connectivity IMS - Systems Lab & T.M,

What is Wireless M-BUS?

- Open standard for Automatic Meter Reading at sub 1 GHz
- Metering Bus (or in short "M-Bus") is a basis for new Advanced Metering Infrastructure (AMI) installations. It defines the communication between meters for water, gas, heat and the data concentrators.
- Wireless M-Bus standard defines the wireless communication between meters.

Relevant standards documents are the following:

- European standard prEN13757-4:2011 Wireless meter readout
- European standard EN13757-3:2004 Dedicated application laver
- ETSI EN 300 220 v2.3.1

Wireless M-BUS scenario

- Automatic meters reading to:
 - Stationary data collectors
 - Mobile data collectors
- Meters are working without any operator's intervention or need for battery replacement.

ST Wireless M-BUS Stack features (1/2)

- Development based on:
 - STM32L152 MCU ARM 32bit
 - SPIRIT transceiver Sub GHz
- WMBUS protocol stack EN113757-4:2011.10
- Mode supported are: S, T, R, N (except N2g which requires 4-GFSK modulation)
- Device Type: Meter and Concentrator
 - →PHY and LINK layer implementation provided as binary library for STM32L (ARM Cortex-M3).
 - →Example application layer provided in source form for user customization.
 - Sniffer Type under development

ST Wireless M-BUS Stack features (2/2)

WMBUS Mode supported are:

→S, T, R @ 868 MHz
→N @ 169 MHz
(except N2g (*) which requires 4-GFSK modulation)

Main features are:

- Auto acknowledgment
- CRC check
- Installation mode/data mode
- Management of a simple meter database based on linked list
- Packet filtering based on registered meters
- Meter and Other roles
- Non blocking API
- AES CTR support
- AT Command (**)

Notes : (*) N2g is multi Hop repeater, (**) Underdevelopment, Q1 / '13

Wireless M-BUS Modes

Wireless M-BUS modes

		0	

Mode	Description	Direction	band	Usage
S	Stationary mode	One (s1) Two way (S2)	868 MHz	Communication between meter and stationary/mobile concentrator. Manchester encoding
Т	Frequent Transmit mode	One(T1) Two way (T2)	868 MHz	The meter transmits a very short frame (typically 3 ms to 8 ms) every few second's Walk-by and/or drive-by readout. Manchester and "3 out of 6 encoding".
R	Frequent Receive mode	Two way	868 MHz	the meter listens every few seconds for the reception of a wakeup message from a mobile transceiver. Manchester encoding
C (*)	Compact	One/two way	868 MHz	Similar T, but send more info with the same energy
Ν	Narrowband VHF	One/two way	169 MHz	Optimized for narrowband and long range. NRZ-encoded
F (*)	Frequent TX & RX	Two way	433 MHz	Wake up message from a stationary or mobile device. NRZ-encoded

(*) Not available in current ST WMBUS implementation

Wireless M-BUS submodes S, T, R

Mode	Direction	Usage
S1	One way	Communication between meter and <i>stationary</i> concentrator with long header. Single channel. Format A only
S1-m	One way	Communication specialized between meter and <i>mobile</i> concentrator with short header. Single channel. Format A only
S2	Two way	Meter unit with a receiver either continuously enabled or synchronized requiring no extended preamble for wakeup. A long header is optional. Single channel. Format A only
T1	One way	Transmit only with short data bursts typically 3.8 ms every few seconds. Single channel. Format A only
T2	Two way	Transmit similar to T1 and establish two way link if ack is received. Single channel, asymmetric. Format A only
R2	Two way	Transmit regularly and wait for a wakeup message which establish a two way communication. Multichannel support. Format A only

Wireless M-BUS submodes C, N, F

Mode	Direction	Usage
C1 (*)	One way	Transmit only, on a regular basis, with short data bursts <22ms. Manchester encoded. Format A and B.
C2 (*)	Two way	Transmits like C1. Its receiver is enabled for a short period after the end of each transmission and locks on if a proper preamble and synchronization word is detected. Format A and B.
N1a-f	One way	Transmit only; transmits on a regular basis to a stationary receiving point. Single hop repeaters are allowed. Format A only.
N2a-f	Two way	Transmits like N1a-f. Its receiver is enabled for a short period after the end of each transmission and locks on if a proper preamble and synchronization word is detected. Format A only.
F2-m (*)	Two way	Meter receiver with possible battery economizer, requiring extended preamble for wake- up. Single Channel. Format A and B.
F2 (*)	Two way	Meter unit transmits on a regular basis. Its receiver is enabled for a short period after the end of each transmission. It locks on if a proper preamble and synchronization word is detected. Single Channel. Format A and B.

STM32L & SPIRIT1 WMBUS **Protocol Layer implementation**

STM32L role:

- Wireless M-Bus (WMBUS) Application Layer
- Wireless M-Bus Link Layer •
 - MAC packet

 - CRC handling Encryption/ Decryption initiate/read.
 - Services to application layer
- Wireless M-Bus PHY API
 - Init PHY for Wireless M-Bus
 - Command/Data exchange APIs

 - Interrupt Services Power Management SPIRIT Mode Management

SPIRIT1 role:

- Wireless M-Bus Modes
- Header, Sync and trailer fields
- Manchester/3-out-of-6-encoding
- Sync detection
- Tx and RX FIFO

PHY Layer: SPIRIT1 WMBUS packet structure

- 1. The PHY payload block will be implemented in Firmware.
- 2. Header, Sync and Post-amble will be only configured using STM32L.
- 3. Data encoding and decoding at PHY level is managed by SPIRIT depending on mode selection.
- 4. Manchester and 3-out of 6 encoding

Header Sync Payload Block Postamb

Manchester or 3 out 6 encoding

PHY Layer: SPIRIT1 Packet Handler Engine

SPIRIT1 Embedded packet format:

PHY Layer: SPIRIT1 WMBUS packet structure

The WM-Bus protocol is chosen by the sub-mode selected:

- Sub-mode 0: Manchester code; preamble length = 279*; sync at 0x7696 (18 bits);
 Supports the modes S1, S2 long header.
- Sub-mode 1: Manchester code; preamble length = 15*; sync at 0x7696 (18 bits).

Supports the modes S1-m, S2, T2 other to meter.

Sub-mode 3: uses 3-out-of-6 code; preamble length = 19*; sync at 0x3D (in 10 bits)

Supports the modes T1, T2 meter to other.

• Sub-mode 5: Manchester code; preamble length = 39*; sync at 0x7696 (in 18 bits).

Supports the mode R2 short header .

 Through the direct mode and specific configuration of the BASIC packet format (NRZ data coding), the SPIRIT1 supports the last sub mode: C1, C2, N1a-f, N2a-f, F2, F2m.

					N	Λ	З	ar	n	С	h	e	2	S	te	Э	r					
1	I	I	1	()	1			I	()	()	()	I	I	()	()	

(*) = in '01' sequence

PHY Layer: SPIRIT1 WMBUS packet structure

PAYLOAD

- The data to transmit are stored in this field. The length is from 0 to 65536 bytes.
- The payload length is set as: *PCKTLEN1* * 256 + *PCKTLEN0*.

POSTAMPLE

- The postamble added at the end of the packet according to the WMBus standard.
- The number of '01' sequences added to the postamble is set with the MBUS_PSTMBL_CTRL

WM-BUS Link Layer 15

- The WM-Bus link layer is compliant with 13757-4:2011.10 •
- Provides services that transfer data between PHY and Application layer ٠
- Generate Outgoing CRC and verify CRCs for incoming messages
- Provide WM-Bus addressing ٠
- Acknowledge transfers for bidirectional communication modes
- WM-Bus frame formation and verification of incoming frames
- Two frame formats exists A and B and they are identified by the preamble/synch bits sequence.

Frame Formats

Packets in format A and B are composed of several blocks:

- First block which contains frame length (L-field), the control information (C-field), and the senders address (Link Layer Address)
- Second block which contains CI field and payload information
- Other(s) optional blocks (max 1 for format B)

Frame Format A

Einet Die ei

		FIIST DIOCK						
	L-field	C-field	M-field	A-field	1			
	1 byte	1 byte	2 bytes	6 bytes				
		Second Block						
CI-field	ł	Data-field CRC-field						
1 byte	15 0	r if it is the last blo	ock (((L-9) modulo	ulo 16) -1) bytes 2 bytes				
			Optional Bloc	k				
	Data-field CRC-field							
		(L-129	9) bytes		2 bytes			

		First Block	
field	C-field	M-field	A-field
byte	1 byte	2 bytes	6 bytes
		Second Block	<

Cl-field Data-field CRC-field 1 byte 115 or if it is the last block (L-12) bytes 2 bytes

Optional Block

Data-field	CRC-field
16 or if it is the last block ((L-9) modulo 16) bytes	2 bytes

- L-field = frame Length
- C-filed = control field
- M-field = Manufacturer ID
- A-field = Address sender
 - CI-Field = Control Information field, specifics the type of data-filed
- CRC-field = Cyclic redundancy check

Frame Format B

Meter installation example

- Concentrator should be in installation mode (manually initiated).
- Meter send SND-IR messages to concentrator (manually initiated). The meter is doing retries in case of no response.
- Concentrator send CNF-IR to meter, subject to approval policy. A message can be also sent to the installer
- From now on the meter is registered with concentrator and it can leave installation mode.
- Concentrator is requiring manual intervention or timeout to leave installation mode

Note: Meter can be also preinstalled requiring no installation messages

Meter sending data example (unidirectional mode)

- Applicable to S1, T1, C1, N1
- SND/NR Send unsolicited/periodical application data without request

17

Wireless MBus Example Frame

Application

STM32L WM-BUS Firmware library

wmbus_appli.c

- Application layer provided as an example in source code
- wmbus_link.c
 - · Link layer provided in library format
- wmbus_phy.c
 - PHY layer provided in library format

MEM Footprint:

- 2.1K RAM, 9.1KBytes FLASH (IAR optimization high (size))
- 2.1K RAM, 18 KB Flash (not optimized)

ST WM-BUS library LINK Layer APIs 20

Name	Description
WMBus_LinkGetAttribute	Read attribute from link layer
WMBus_LinkSetAttribute	Set attribute in link layer
WMBus_LinkServicesInit	Init the link service layer
WMBus_LinkServicesReset	Reset the link service layer
WMBus_LinkRadioPowerOn	Power on radio
WMBus_LinkRadioPowerOff	Power off radio
WMBus_LinkRadioStandby	Put the radio in standby
WMBus_LinkRadioResume	Resume radio from standby
WMBus_LinkServicesRequestsCallbackMode ()	This function processes a request service primitive, generates a valid C-field by setting the FCV, FCB, and PRM bits, transmits the request frame, checks for confirm/response is applicable, and retries data transmission when appropriate (Send/Confirm, Request/Respond when valid ack/nack is not received).
WMBus_LinkServicesIndicationCallbackMode	Receive message within a specific timeout
WMBus_LinkServicesResponseCallbackMode	This function attempts to transmit the response to the indication frame received.

life.augmented

WMBUS PC GUI application

The PC GUI is available in different windows:

- Device Configuration
- Meter Application
- Monitoring

WMBUS GUI application (Monitoring)

WMBUS GUI application (Configuration)

S X O O	🖗 🕕	M-Bus		BOARD TYPE	Spirit Evaluation	
Monitoring	Oevice Type Oconcentrator Router	Meter Sniffer	WM-Bus Header Preamble(Chips)	90	WM-Bus Mode - T1 S1-m	● T2 ● S1 ● S2 ● R2
Meters	Send	C Receive	Send	5) 16	●C1 ●F2-m Channel Char	C2 F2 N1 ALL
Sniffer	Device ID Mfr ID 0x 4E8D	Identification No 11456311	Version No. 0x 10	Device Type Others v	Frame Format -	Receive
	RF Compensation	Parameters	Device Mode	() Send	• Type A • Type B	C Receive
	Reset Board Reset to Defau Reset	t 🚺 Send	O Data Comm m Power RF Output Power	ode 🚺 Receive	Baud Rate Flow Control	115200 v
	Encryption Key – Key 0x	• Meter Key	Time 1/1/20	11 9:36 AM	Parity	No Parity 🔽
	• No Encryption Send Mode Response I	Receive	Other Settings -	() Set	Meter Reading I Interval (sec	nterval
	Interval (ms 3	Receive	Enable RSSI Clear Installed Enable LED Co	Send Send Receive	TimeOut (sec)	10000

WMBUS GUI application (Meters)

References

- EN 13757-4:2005, Communication systems for meters and remote reading of meters - Part 4: Wireless meter readout (Radio meter reading for operation in the 868 MHz to 870 MHz SRD 10 band)
- prEN 13757-4:2011, Communication systems for meters and remote reading of meters — Part 4: Wireless meter readout (Radio meter reading for operation in SRD bands)

SPIRIT1 development kit

• Hardware:

- 2 Motherboards (STM32L)
- 2 SPIRIT1 modules, antenna connector
- 2 antennas
- Programmable through GUI
 - SPIRIT1 performance can be easily checked/tested
- Highly portable driver available
 - Examples
 - Documentation
 - User manual

URS - Applicatio	n v£.9.0						_	
нер								
0N6 W	Comt.	3						
Rado Setting								
Frequency base	141	Charvel spa	one livel	Cravel number	Cente	r Frequency (Hz)		
				0				
Modulation		Data rate Dod		Frequency deviation	HE Chav	nei filter (Hz)	0,0	put power (dilm)
24%		_				No. State		
adat duration (m	d:							Configure Rade
fodulation: GPS fodulation: GPS fodulation: GPS fodulation: GPS fodulation: GPS fodulation: GPS fodul hannal (8) 84552 () M	RCI Data 1 ICI DATA 1	ata: 1200 ata: 38400 ata: 100000 ata: 250000 a 1ests 1	bps Deviation hps Deviation bps Deviatio bps Deviatio	: 3200 Hz RX 5W 1 20000 Hz RX 8 5 5980 Hz RX 5 r: 3237000 Hz RX 5	: 58960 Hz W: 135000H2 W: 32506H2 W: 340000Hz	Q	MG STRAT	577.
Preastale langth	L/HZ		CIIC	DetrolPed		Destrationa	dires.	Der
-	Length Br	vest 40		Length Dytes	Q/-			L.44
10 2	Ex 0080	8801	No CRC W	0	0			Whitening
[10]	Dx 0585	8808	No CRC M		(#2			(M) whitelong

ST evaluation board at 169 MHz +27 dBm

- Specifically designed to meet Wireless-MBUS requirements @ 169 MHz. ٠
- Reference design based on external PA SkyWorks SKY66100-11 ٠
- Saw Filter TAI-SAW Technology TA0437A to respect emission regulations •
 - Fc = 169 MHz, BW = 8.8 MHz typ.
 - IL = 1.5 dB typ., Atten = 52 dB typ.
- CEL uPD5740T6N external LNA to improve sensitivity about 9 dB
- TCXO 25 MHz NDK NT2016SB •

Smart GAS Meter evaluation board

Smart GAS Meter – Evaluation Board preliminary

Solution Under Development

Smart GAS Meter Schematic

Solution Under Development

28

SPIRIT1 – Sub 1-GHz RF Transceiver

- Frequency bands: 300-348 MHz, 387-470 MHz, 779-956 • MHz
- Modulation schemes: FSK, GFSK, MSK, OOK, and ASK ٠
- Air data rate from 1 to 500 kbps ٠
- Programmable output power: from -30dBm to +12dBm
- Low current consumption (8mA RX, 433 MHz, FSK, 38.4kbps)
- Programmable channel spacing (12.5 kHz
- min). Compatibility with narrow band system •
- Frequency Hopping is allowed
- Automatic acknowledgement, retransmission, and timeout protocol engine
- AES 128-bit encryption co-processor
- Antenna diversity algorithm
- Package: QFN20 4x4 mm
- Three packet configurations
 - Basic
 - STack
 - Wireless M-BUS
- Link quality indicators and received signal qualifier (RSSI, LQI, PQI, SQI, CS)
- Supports CSMA/CA

SPIRIT1: Key features

Antenna Diversity Algorithm

- An external switch is controlled to select the antenna with the highest RSSI
- While receiving the preamble, the antennas are repeatedly switched until the RSSI> threshold.
- The switch is then disabled and the selected antenna is used.

Operating Modes/Consumption

COMPETITION BENCHMARKING

	SPIRIT1	BEST IN CLASS COMPETITOR		NOTE
POWER CONSUMPTION (@3V)	24mW	W/O DC-DC converter	45mW	from 30% to 50% power saving
		W/ EXT DC-DC converter	32mW	
SENSITIVITY (@ 1.2kbps)	-120dBm	-111dBm		
PROGRAMMABLE CHANNEL SPACING	YES, 12.5KHz	YES but 200kHz only		Can't design NARROW BAND SYSTEMS
ANTENNA DIVERSITY	YES	NO		
Automatic ACK, retransmission and timeout protocol engine	YES	NO		

CSMA/CA algorithm

STM32L - Ultra-low power STM32

32

64- to 128-Kbyte System Flash memory Power supply 10- to 16-Kbyte SRAM Energy saving Internal regulator ARM Cortex-M3 CPU POR/PDR/PVD/BOR 84-byte backup data 32 MHz ARM Cortex-M3 core @ 32 MHz Xtal oscillator 4-Kbyte EEPROM 32 kHz + 1 ~24 MHz Boot ROM -40 to 125 °C Internal RC oscillators 37 kHz + 16 MHz Connectivity Ultra-low power in dynamic and static Internal ULP Nested vector **USB 2.0 FS** multispeed RC oscillator interrupt modes 64 kHz to 4 MHz controller (NVIC) **3x USART** PLL JTAG/SW debug 2x SPI Clock control Embedded Trace 2x |2C Power supply: Macrocell (ETM) RTC/AWU 2x watchdogs **Touch sensing** Memory protection 1.65 to 3.6V (independent and window) unit (MPU) Charge-transfer driver without BOR up to 18 channels 37/51/80 I/Os Cyclic redundancy 1.8 to 3.6V with BOR AHB bus matrix Analog check (CRC) 2-channel 12-bit DAC Voltage scaling 3 modes 7-channel DMA 12-bit ADC 24 channels **Special features** Control Display 2x comparators 32 to 128-Kbyte Flash 8x 16-bit timer LCD driver 8x40 Temperature sensor 10 to 16-Kbyte SRAM Flash size (bytes) STM32L152RD STM32L152VD STM32L152ZD 384 K 4-Kbyte data EEPROM STM32L151RD STM32L151VD STM32L151ZD STM32L152RC STM32L152VC STM32L152ZC 256 K STM32L151RC STM32L151VC STM32L151ZC Segment LCD 8x40 128 K STM32L151CB STM32L151RB STM32L151VB Comparator 64 K STM32L151V TM32L151C8 STM32L151R STM32L152C6 STM32L152R6 32 K STM32L151C6 STM32L151R6 Pin count 48 pins 64 pins 100 pins 144 nins LQFP/QFN LOFP/BGA LOFP/BGA LOFP/BGA Pin-to-pin compatible with STM32 family Legend: STM32L151 without LCD STM32L152 with LCD

STM32L: Advanced ultra-low-power MCU

life.gugmented

www.emcu.it

33